
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2009

Learning to rank documents with support vector
machines via active learning
Robert James Arens
University of Iowa

Copyright 2009 Robert James Arens

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/331

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Arens, Robert James. "Learning to rank documents with support vector machines via active learning." PhD (Doctor of Philosophy)
thesis, University of Iowa, 2009.
http://ir.uiowa.edu/etd/331.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages


LEARNING TO RANK DOCUMENTS WITH SUPPORT VECTOR
MACHINES VIA ACTIVE LEARNING

by

Robert James Arens

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science in the
Graduate College of The

University of Iowa

December 2009

Thesis Supervisor: Professor Alberto Segre



1

ABSTRACT

Navigating through the debris of the information explosion requires powerful,

flexible search tools. These tools must be both useful and useable; that is, they

must do their jobs effectively without placing too many burdens on the user. While

general interest search engines, such as Google, have addressed this latter challenge

well, more topic-specific search engines, such as PubMed, have not. These search

engines, though effective, often require training in their use, as well as in-depth

knowledge of the domain over which they operate. Furthermore, search results

are often returned in an order irrespective of users’ preferences, forcing them to

manually search through search results in order to find the documents they find

most useful.

To solve these problems, we intend to learn ranking functions from user rele-

vance preferences. Applying these ranking functions to search results allows us to

improve search usability without having to reengineer existing, effective search en-

gines. Using ranking SVMs and active learning techniques, we can effectively learn

what is relevant to a user from relatively small amounts of preference data, and

apply these learned models as ranking functions. This gives users the convenience

of seeing relevance-ordered search results, which are tailored to their preferences as

opposed to using a one-size-fits-all sorting method. As giving preference feedback

does not require in-depth domain knowledge, this approach is suitable for use by

domain experts as well as neophytes. Furthermore, giving preference feedback does

not require a great deal of training, adding very little overhead to the search process.



2

Abstract Approved:
Thesis Supervisor

Title and Department

Date



LEARNING TO RANK DOCUMENTS WITH SUPPORT VECTOR
MACHINES VIA ACTIVE LEARNING

by

Robert James Arens

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science in the
Graduate College of The

University of Iowa

December 2009

Thesis Supervisor: Professor Alberto Segre



Copyright by

ROBERT JAMES ARENS

2009
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Robert James Arens

has been approved by the Examining Committee
for the thesis requirement for the Doctor of
Philosophy degree in Computer Science at the December 2009
graduation.

Thesis Committee:
Alberto Segre, Thesis Supervisor

Padmini Srinivasan

Nick Street

Faiz Currim

Juan Pablo Hourcade



To my family

ii



ACKNOWLEDGMENTS

This thesis could not have been completed without the help of many people.

I would like to thank Dr. Steve Bruell, Dr. Padmini Srinivasan, and Dr. Nick

Street for their constant encouragement. I would also like to thank the entire

administrative staff of the Computer Science Department, especially Catherine Till,

the source from which all good things flow.

iii



ABSTRACT

Navigating through the debris of the information explosion requires powerful,

flexible search tools. These tools must be both useful and useable; that is, they

must do their jobs effectively without placing too many burdens on the user. While

general interest search engines, such as Google, have addressed this latter challenge

well, more topic-specific search engines, such as PubMed, have not. These search

engines, though effective, often require training in their use, as well as in-depth

knowledge of the domain over which they operate. Furthermore, search results

are often returned in an order irrespective of users’ preferences, forcing them to

manually search through search results in order to find the documents they find

most useful.

To solve these problems, we intend to learn ranking functions from user rele-

vance preferences. Applying these ranking functions to search results allows us to

improve search usability without having to reengineer existing, effective search en-

gines. Using ranking SVMs and active learning techniques, we can effectively learn

what is relevant to a user from relatively small amounts of preference data, and

apply these learned models as ranking functions. This gives users the convenience

of seeing relevance-ordered search results, which are tailored to their preferences

as opposed to using a one-size-fits-all sorting method. As giving preference feed-

back does not require in-depth domain knowledge, this approach is suitable for use

by domain experts as well as neophytes. Furthermore, giving preference feedback

does not require a great deal of training, adding very little overhead to the search

process.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation: Searching MEDLINE with PubMed . . . . . . . . . 2

1.2.1 MEDLINE and PubMed . . . . . . . . . . . . . . . . . . 2

2 FOUNDATIONS AND RELATED WORK 10

2.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Basic Retrieval and Sorting of Documents . . . . . . . . 10
2.1.2 Term Weighting . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Stemming . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Relevance Feedback and Query Expansion . . . . . . . . 13
2.1.5 Evaluation of Information Retrieval Systems . . . . . . . 15

2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Linear SVMs . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Nonlinear SVMs . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Ranking SVMs . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 SVMs and Information Retrieval . . . . . . . . . . . . . . 23

2.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 SVMs and Active Learning . . . . . . . . . . . . . . . . . 24

2.4 Learning to Rank from Preferences . . . . . . . . . . . . . . . . 24

3 DATA COLLECTIONS 27

3.1 Biomedical Data Collections . . . . . . . . . . . . . . . . . . . . 27
3.1.1 MEDLINE . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 OHSUMED . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 LETOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Enterprise Data Collection . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 TREC Enterprise 2007 . . . . . . . . . . . . . . . . . . . 32
3.2.2 Dublin Core Metadata . . . . . . . . . . . . . . . . . . . 35

4 DESCRIPTION OF SYSTEM AND SIMULATION FRAMEWORK 37

v



4.1 Initial Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 The Feedback Round . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Choosing Examples . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Eliciting Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Convergence Threshold . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 The Kendall Tau Rank Correlation Coefficient . . . . . . 41

5 SIMULATIONS IN THE BIOMEDICAL DOMAIN 43

5.1 Adapting the General Framework to the Biomedical Domain . . 43
5.2 Simulations Using OHSUMED . . . . . . . . . . . . . . . . . . . 44

5.2.1 Motivation for Using the Interquartile Mean . . . . . . . 45
5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . 47

5.3 Active Learning by Proximity Sampling . . . . . . . . . . . . . . 56
5.3.1 Results and Discussion . . . . . . . . . . . . . . . . . . . 57

5.4 Nonrandom Seeding of Feedback Rounds . . . . . . . . . . . . . 57
5.4.1 Results and Discussion . . . . . . . . . . . . . . . . . . . 61

5.5 Simulation with a Gradient Oracle . . . . . . . . . . . . . . . . . 61
5.5.1 Results and Discussion . . . . . . . . . . . . . . . . . . . 64

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 SIMULATIONS IN THE ENTERPRISE DOMAIN 68

6.1 Adapting the General Framework to the Enterprise Domain . . 68
6.2 Simulations Using the TREC Enterprise 2007 Data Set . . . . . 69
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 69

6.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 USER STUDY IN THE BIOMEDICAL DOMAIN 73

7.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.2 Materials and Procedure . . . . . . . . . . . . . . . . . . 74

7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 76
7.2.1 Ranking Performance . . . . . . . . . . . . . . . . . . . . 77
7.2.2 Satisfaction Survey . . . . . . . . . . . . . . . . . . . . . 78
7.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 CONCLUSION AND FUTURE WORK 81

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.1.1 Full User Study . . . . . . . . . . . . . . . . . . . . . . . 82
8.1.2 Expansion into Legal Discovery . . . . . . . . . . . . . . 82

vi



8.1.3 Active Learning Methods . . . . . . . . . . . . . . . . . . 83
8.1.4 Consistency Checking and Concept Drift . . . . . . . . . 84
8.1.5 Collaborative Filtering . . . . . . . . . . . . . . . . . . . 85

APPENDIX

A USER STUDY MATERIALS 86

A.1 Training Document . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2 Consent Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 Demographic Survey . . . . . . . . . . . . . . . . . . . . . . . . 88
A.4 Satisfaction Survey . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



LIST OF TABLES

Table

3.1 Calculation of low-level LETOR features . . . . . . . . . . . . . . . 33

3.2 Calculation of high-level LETOR features . . . . . . . . . . . . . . . 33

5.1 Skewness calculated across all thresholds and examples per round for
top sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 NDCG calculated across all queries at positions 1 through 10 for
ranking SVMs trained on all data available for a query. . . . . . . . 47

5.3 Averaged performance for random sampling method, for all exam-
ples per round and thresholds. The top subtable reports NDCG@10,
middle reports number of rounds until the convergence threshold is
met, bottom reports number of examples seen until convergence. . . 49

5.4 Averaged performance for mid sampling method, for all examples per
round and thresholds. The top subtable reports NDCG@10, middle
reports number of rounds until the convergence threshold is met,
bottom reports total number of examples seen until convergence. . . 50

5.5 Averaged performance for top sampling method, for all examples
per round and thresholds. Top subtable reports NDCG@10, middle
reports number of rounds until the convergence threshold is met,
bottom reports total number of examples seen until convergence. . . 51

5.6 Standard deviations in performance for top sampling. Italics indi-
cates standard deviations significantly higher than the mean standard
deviation, while boldface indicates significantly smaller standard de-
viations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.7 Averaged performance for proximity sampling method, for all ex-
amples per round and thresholds. Top subtable reports NDCG@10,
middle reports number of rounds until the convergence threshold is
met, bottom reports total number of examples seen until convergence. 59

5.8 Averaged performance for random vs. nonrandom seeding methods
over all examples per round at a threshold of 0.9. Top subtable
reports NDCG@10, middle reports number of rounds until the con-
vergence threshold is met, bottom reports total number of examples
seen until convergence. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Averaged results for the gradient oracle experiments. . . . . . . . . 64

viii



6.1 Averaged performance for top sampling method, for all examples per
round at a stopping threshold of 0.9. . . . . . . . . . . . . . . . . . 69

6.2 NDCG@10 compared to average percentage of data utilized, for OHSUMED
data vs. TREC Enterprise data. Calculation is done for all numbers
of examples per round using top sampling and a stopping threshold
of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Search query, number of results retrieved, and NDCG@10 for the
eight queries analyzed for ranking performance. . . . . . . . . . . . 77

ix



LIST OF FIGURES

Figure

1.1 Picture of slider interface from [36] . . . . . . . . . . . . . . . . . . 5

1.2 PubMed query produced by the settings in Figure 1.1, from the sys-
tem described in [36] . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Sample precision and recall curve . . . . . . . . . . . . . . . . . . . 17

2.2 Normalized recall curve . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Sample view of the results page from PubMed. Inset: document
ranking options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Sample MeSH hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Full translation of the query “diabetes” . . . . . . . . . . . . . . . . 30

4.1 Illustration of learning ranking functions from user feedback . . . . 38

5.1 Box and whisker plot of the distribution of performance across the
101 queries for top sampling at a convergence threshold of 0.9, across
all examples per round. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Comparison of the total number of examples seen to NDCG@10 for
all sampling methods, at thresholds 0.7, 0.8 and 0.9. Markers indicate
number of examples per round, from one to five. . . . . . . . . . . . 53

5.3 Total number of examples seen vs. examples per round, plotted for
all convergence thresholds. . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 NDCG@10 vs. total examples seen until convergence for proximity
sampling learning experiments. Values are for all sampling methods,
thresholds, and examples per round. . . . . . . . . . . . . . . . . . . 58

5.5 NDCG@10 calculated for rankings produced by the 25 LETOR fea-
tures. L1 T through L10 T indicate features L1-L10 calculated over
the title, and L1 A through L10 A indicate features L1-L10 calculated
over the abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 NDCG@10 vs. total examples seen until convergence for nonrandom
seeding methods for all examples per round and at a convergence
threshold of 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



5.7 NDCG@10 calculated for Gradient Oracle values, dashed line indi-
cates the line x = y. Note that values along the x-axis are in de-
creasing order, to better demonstrate declining performance as the
oracle’s accuracy declines. . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Performance comparison with TREC Enterprise 2007 systems, our
performance in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Results from the demographic survey. Each graph is labeled with the
question answered, and the percentage of respondents choosing the
indicated response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Documents retrieved vs. documents seen for all queries. . . . . . . . 78

7.5 Results from the user satisfaction survey. Each graph is labeled with
the question answered, and the percentage of respondents choosing
the indicated response. . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Screenshot of the demographic survey . . . . . . . . . . . . . . . . . 89

A.2 Screenshot of the satisfaction survey . . . . . . . . . . . . . . . . . 90

xi



1

CHAPTER 1

INTRODUCTION

1.1 Overview

Navigating through the debris of the information explosion requires powerful,

flexible search tools. These tools must be both useful and useable; that is, they

must do their jobs effectively without placing too many burdens on the user. While

general interest search engines, such as Google, have addressed this latter challenge

well, more topic-specific search engines, such as PubMed, have not. These search

engines, though effective, often require training in their use, as well as in-depth

knowledge of the domain over which they operate. Furthermore, search results

are often returned in an order irrespective of users’ preferences, forcing them to

manually search through search results in order to find the documents they find

most useful.

To solve these problems, we intend to learn ranking functions from user rele-

vance preferences. Applying these ranking functions to search results allows us to

improve search usability without having to reengineer existing, effective search en-

gines. Using ranking SVMs and active learning techniques, we can effectively learn

what is relevant to a user from relatively small amounts of preference data, and

apply these learned models as ranking functions. This gives users the convenience

of seeing relevance-ordered search results, which are tailored to their preferences as

opposed to using a one-size-fits-all sorting method. As giving preference feedback

does not require in-depth domain knowledge, this approach is suitable for use by

domain experts as well as neophytes. Furthermore, giving preference feedback does



2

not require a great deal of training, adding very little overhead to the search process.

1.2 Motivation: Searching MEDLINE with
PubMed

MEDLINE search via PubMed serves as an illustrative microcosm of the chal-

lenges we seek to address. While work presented in this thesis does not focus solely

on this search domain, it is used in our simulation framework simulation and as

a sample application for our user study. The importance of improving the search

experience for this system is evidenced not only by its ubiquity, but also by the

amount of academic work seeking to improve it.

1.2.1 MEDLINE and PubMed

MEDLINE is the National Library of Medicine’s bibliographic database. It

contains over 18 million citations from over 5,000 publications [39], and can be

searched online using the PubMed search engine. The use of this resource is ubiqui-

tous throughout the biomedical community and beyond, by researchers, clinicians,

and amateurs interested in the field.

The PubMed search engine is quite robust, implementing a number of features

to improve coverage and automatically improve user queries. Chief among these re-

finements is the use of Medical Subject Heading (MeSH) hierarchy metadata terms.

Citations in MEDLINE are tagged with one or more MeSH terms, describing the

content of the article as well as its structure (e.g., drug study, clinical trial, cohort

study, etc.) and country of origin. These terms are arranged hierarchically, with

specific topics organized under more general topics (e.g., “Head” is under “Body

Regions”, which is under “Anatomy”). Users can employ MeSH terms in their



3

queries, terms in the query will be expanded with relevant MeSH terms (e.g., “flu”

expanded to include “influenza, human”, etc.), and any matching acronyms will be

expanded as well (e.g., “IL-1” expands to “interleukin-1”).

While PubMed search is quite powerful, sifting through the search results can

be quite inconvenient. No relevance-based sorting of results is implemented; users

can sort results alphabetically by first author, last author, citation title, journal, or

by publication date. The sheer size of the MEDLINE database often makes manually

searching through results unfeasible; a search for “liver cancer”, for example, returns

over 130,000 results. This leads to a “search boomerang”, where users alter their

search queries with more specific criteria (resulting in too few results), then relaxing

their criteria (resulting in too many), repeating until a reasonably sized result set

is obtained.

This behavior is far from hypothetical, or limited to domain novices. Bro-

nander et al. [8] showed that the expertise of fourth-year medical students was

not sufficient to identify optimal MEDLINE search queries, and furthermore, even

practicing physicians “demonstrated deficiencies” in their search skills. The only

source of improvement they found was practice; education and computer literacy

appeared to have no influence on search performance.

Clearly, this is undesirable behavior. Suboptimal search queries which lead

to “boomerang” searches waste time, resulting in frustration and lost productivity.

However, the searcher is not to blame for this problem if neither domain knowledge

nor instruction can improve the efficiency of search. Improvements must be made

to the tool itself.



4

1.2.1.1 Improvements to PubMed/MEDLINE

Here we present a selection of work aimed at improving the search experience

for users of MEDLINE and PubMed. This is by no means a comprehensive survey of

the available literature, but a representative view of different approaches illustrat-

ing the breadth of the improvement problem. This section is split into two general

areas of research; improvements to the search faculty itself, and improvements to

the presentation of search results.

Improvements to Search

While PubMed offers users a powerful search system, learning that system

can be an impediment to its use. Lewis et al. [33] sought to obviate this issue

by implementing a “free-text” query system, which took as its input a paragraph

of prose text regarding the subject to be searched, and returned documents simi-

lar to that input paragraph. A number of methods for computing similarity were

tested, each producing a score based on comparing individual words from the input

paragraph to words in the target documents. In a similar vein, Goetz and von der

Lieth [22] used a pool of representative documents to generate search results by

mining that pool for a set of words occurring significantly more often in the pool

than MEDLINE documents in general. Other documents were scanned and scored

for their relevance to the set of discriminating words.

These search methods provide a number of improvements over PubMed search.

Both systems remove the need for a user to learn the complicated PubMed search

system. Furthermore, search results can be presented in order of relevance to the

user’s query since a similarity score is computed. These improvements come at the

cost of not taking advantage of PubMed’s features, which is quite a high price to



5

Figure 1.1: Picture of slider interface from [36]

pay when taking into account such problems as synonym resolution. An input text

referring to a signaling molecule named interleukin-1 using a common shorthand,

“IL-1”, will not generate a higher similarity score when compared to a target text

using the longer name. Such occurrences are common in biomedical literature [46].

These approaches also assume its users possess a fairly high level of domain knowl-

edge, enough at least to produce a paragraph on their search subject or identify

some group of exemplar documents. While one can assume that the average MED-

LINE searcher is a professional in the biomedical field, it will be the case that some

searchers are entering a new field of research, and will be unable to perform these

tasks.

Muin and Fontelo [36] addressed the problem by introducing a user interface

that would allow users to interact with PubMed on a more intuitive level. “Slider”

bars, representing various search options and MeSH terms, are used to construct

the query without requiring the user to manually enter them. The settings shown

in figure 1.1, for example, correspond to the query in Figure 1.2. Again, this system

presents a superior user experience to PubMed. Unlike previous systems [33, 22],



6

heart attack AND treatment AND ("2004"[PDAT]:"3000"[PDAT])

AND hasabstract AND (clinical trials[MeSH Terms] OR clinical

trial[Publication Type] OR random*[Title/Abstract] OR random

allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]) AND

"humans"[MeSH Terms] AND English[Lang]

Figure 1.2: PubMed query produced by the settings in Figure 1.1, from the system
described in [36]

the full power of PubMed’s search features are leveraged. Users are not required

to learn the MeSH terms that will allow them to search for differing age groups

or methodology types, and restricting results by date is quite intuitive. However,

users are presented with only a very narrow subset of the MeSH terms available

for search. Terms dealing with specific diseases, parts of the body, etc. are not

presented to the user. Furthermore, those terms that are presented are specifically

targeted towards papers dealing with human subjects. While this is certainly an

important avenue of research, the system is shutting out the not inconsequential

number of biomedical professionals conducting other types of research. As such, its

utility is limited.

Improvements to Results Presentation

Rather than attempting to improve PubMed at the retrieval stage, much work

has focused on improving the presentation of PubMed search results. This allows

researchers to leverage the power of PubMed’s retrieval refinements, allows seasoned

users to continue using search methods they’re already familiar with, and helps

mitigate the “boomerang” problem for both new and experienced users - since the

most relevant results are (theoretically) easily accessible, large retrieval sets are not

a problem.

Herskovic and Bernstam [27] used the PageRank algorithm [40] to rank results



7

by the number of citations to each result document, as well as the importance of

those citations, giving a ranking based on popularity and perceived authority of the

documents. Expanding on this idea, Plikus et al. [41] produced a suite of analytic

tools including a ranking scheme which used a statistical combination of the impact

factor of the journal in which the document was published, and the number of

forward citations to the document. This ranking scheme ensures that “important”

documents, those cited heavily and published in highly-regarded journals, will be

ranked above lesser-known works published in lower-impact journals. Lin et al.

[34] departed from the traditional ranking framework by first clustering similar

documents together, and then ranking documents in each cluster using citation

data. These clusters give users a more intuitive overview of their results than a

single ranked list can provide.

Each of these systems relies on citation-based ranking. While many searchers

will appreciate such a scheme, others may not; if a user’s information need can be

best satisfied by a less popular citation, that user will find such a ranking scheme

frustrating, and perhaps no better than no ranking at all.

Similar to the work done by Goetz and von der Lieth [22], Suomela and An-

drade [47] used a set of documents representing a certain area of interest to generate

a set of significant keywords, which were then used to score result documents for

relevance. Ranking in this way rewards documents similar to those used to generate

the keyword set and penalizes those which deviate. These methods share similar

drawbacks, in that they both require enough familiarity with the subject matter

to compile a set of exemplar documents. This potential failing may be addressed

by automatically generating the exemplar set; in Suomela and Andrade [47], the

authors generated an exemplar set of 81,416 documents by retrieving all PubMed



8

documents tagged with the MeSH term “stem cells”. While expedient, a ranking

generated in this manner will be too general to be of use when a more specific query

is presented. Furthermore, the authors show no evidence that their method works

well with a much smaller exemplar set, perhaps a few dozen or hundred documents.

1.2.1.2 Core Criticisms, and a Way Forward

The body of work presented in the previous section can be roughly divided into

two categories: systems which make assumptions of the users’ information needs,

and systems which require users to produce an exemplar before using the system.

The core issue with the former systems is that although those systems state the as-

sumptions they are making, and provide explanations for why those assumptions are

made, those systems will be of little to no use to users for whom those assumptions

do not stand. The core issue with the latter systems is the burden placed on the

users, both in terms of requisite domain knowledge and creation of the exemplar.

A reasonable middle ground must be struck in this tradeoff between assumption

and burden, providing users as much flexibility and freedom from assumption as

possible while requiring as little input as can be managed.

We here propose to achieve this middle ground by using machine learning

techniques to learn ranking functions from user feedback. This will be achieved by

using four existing technologies: information retrieval, feedback collection, support

vector machine (SVM) learning, and active learning. Information retrieval, in the

form of the PubMed search engine, will conduct the retrieval of documents based

on a user query. Feedback collection will allow us to collect information from the

user regarding the user’s preference on retrieved documents. SVM learning will

extrapolate a ranking function based on feedback collected, which will be used to



9

rank retrieved documents. Finally, active learning will provide a methodology to

minimize the amount of feedback needed to produce an accurate ranking function.

In Chapter 2, we present the foundations and work related to this thesis.

Chapter 3 presents the data sets used in simulation experiments on the system,

which is described in Chapter 4. The simulation experiments themselves are de-

scribed in Chapters 5 and 6. In Chapter 7, we describe a preliminary user study

designed to assess the viability of the proposed system in an online, ad-hoc search

environment. We offer concluding remarks in Chapter 8, along with future direc-

tions for the work presented in this thesis.



10

CHAPTER 2

FOUNDATIONS AND RELATED WORK

2.1 Information Retrieval

Document retrieval is a subfield of information retrieval dealing with the re-

trieval of text documents which contain information relevant to a user’s information

needs from a larger collection of documents. Use of a document retrieval system is

often an ad-hoc retrieval task; that is, users express their information needs as a

query to a search interface operating over the collection of documents they wish to

search. Results from this search are then presented to the user. Current document

retrieval systems often return these results to users sorted by their relevance to users

information needs, allowing users to quickly find the documents most relevant to

their searches.

2.1.1 Basic Retrieval and Sorting of Documents

Ad-hoc retrieval of documents in a collection based on a user query can be

done quite simply by finding documents which contain the same words contained

in the query, and returning them in a batch to the user. However, this method

fails to provide any measure of relevance these documents may have to the query

in question. Without this notion of relevance, users will be forced to sift through

these potentially large, unordered batches of documents to find the information they

require.

In order to conduct relevance-based retrieval, some method of comparison

between documents and queries must be employed. For this reason, documents and

queries in retrieval systems are expressed as vectors of the terms comprising the



11

collection over which the retrieval system operates. A document dj and query qk

can be expressed as vectors

dj = (t1,j, t2,j, t3,j, . . . , tN,j)

qk = (t1,k, t2,k, t3,k, . . . , tN,k)

of t features representing the N terms in the document collection [32]. The simplest

values these features can take on are binary values of one or zero, indicating the

presence or absence of a term. In this case, retrieval can be carried out by summing

the number of terms the document and query have in common with the following

similarity function [32].

sim(dj, qk) =
N∑

i=1

ti,j × ti,k (2.1)

This similarity method, beyond simply finding documents relevant to the query, also

computes a score telling us how similar a document is to a query. This score can be

used to rank the documents in order of relevance, allowing the user to focus on highly

ranked documents instead of manually sorting through all retrieved documents to

find the ones most relevant to the user’s information needs.

Though simple, this binary retrieval scheme fails to acknowledge that certain

terms in a document may be more important than others. Weighting terms based

on some notion of the importance of the terms in the document and the collection

in general can greatly improve the effectiveness of the document retrieval system.

In this case, vectors are expressed as weights [32]

dj = (w1,j, w2,j, w3,j, . . . , wn,j)

qk = (w1,k, w2,k, w3,k, . . . , wn,k)

where a weight wi, j is the weight of term i in document j. This notation allows

us to represent the document collection as a term-by-document matrix, where the

columns of the matrix hold the documents and the rows hold the terms. Retrieval



12

can be conducted by finding the distance in vector space between a query and a

document via a vector dot product, yielding the following similarity function [32].

sim(dj, qk) = dj · qk =
n∑

i=1

wi,j × wi,k (2.2)

2.1.2 Term Weighting

Term weighting refers to the process of assigning numerical significance to

words in a document in order to reflect the relative importance of those words in

reference to the rest of the document collection. Documents to be retrieved using

this similarity measure must have their terms weighted carefully in order to ensure

that retrieval is done correctly and efficiently. For example, terms could be weighted

by simply counting the number of occurrences of a term in a document (called term

frequency, or tf). More specifically, the tf of a term ti in a document dj can be

calculated as [2, 32]

tfi,j =
ci,j∑

k∈dj
ck,j

(2.3)

where ci,j indicates the count of occurrences of the term in the document. Simi-

larities computed from documents using this weighting scheme will be dominated

by longer documents, which will have large term weights, and thus produce higher

scores. These vectors can be converted into unit length vectors, or normalized, by

dividing each weight in a vector by the overall length of the vector, which is
∑N

i=1w
2
i

for each document.

An additional factor in term weighting has to do with the number of documents

in which a term appears. A term appearing many times in a document may seem

to be important in describing the content of that document, but if many documents

in the collection also contain that term, then it cannot be considered to be a term



13

which discriminates the document from the rest of the collection. The tf of a term

can be scaled by this document frequency; since it is seen in the denominator of this

calculation, it is referred to as inverse document frequency (idf). It can be obtained

for a term ti in a collection D containing documents dj as follows [2, 32].

idfi = log
|D|

|dj : ti ∈ dj|
(2.4)

tf∗idf is a standard term weighting score for text retrieval systems. It provides

an accurate method to determine a term’s importance in a document relative to its

importance in a collection.

2.1.3 Stemming

Document representation for retrieval hinges on properly identifying the words

which make up the document’s content. Often, it is useful to reduce inflected forms

of words to their root form; for example, when trying to discover documents relating

how much money a business makes, we might like to lump the words earned, and

earnings together with their root earn. This process, called stemming, can greatly

increase retrieval performance by ensuring that terms are correctly weighted in a

document.

2.1.4 Relevance Feedback and Query Expansion

Performance of a document retrieval system can be improved by improving

user queries. Relevance feedback alters a query based on the distribution of terms

in documents relevant to the user’s information need. More specifically, given a

query qi returning a set of documents d with subsets r and s (where r ∪ s = d)

corresponding to the relevant and non-relevant documents respectively, the query

can be reformulated as [2, 32]



14

qi+1 = qi +
β

|r|

|r|∑
j=1

rj −
γ

|s|

|s|∑
k=1

sk (2.5)

where β and γ are scaling values between 0 and 1 where β + γ = 1. This new query

is then given to the document retrieval system. Relevance feedback can be repeated

on the new set of retrieved documents, or the set can be returned to the user.

Deciding which documents are relevant is a key element of relevance feedback.

In explicit relevance feedback, a set of documents is shown to the user, and the user

indicates which of these seem relevant [2]. In implicit relevance feedback, the system

records the user’s interaction with the system in order to determine relevance, e.g.,

by clicking on a link to a document, the system marks the document as relevant

[31]. In pseudo-relevance feedback, the user’s input is never requested; the system

simply assumes that some number of the top documents retrieved by the system

are relevant [2].

Another method of improving user queries is to expand them by adding terms

relevant to terms already in the query, before performing any retrieval. Resources

for expanding queries can include thesauri, taxonomies, and other controlled vocab-

ulary schemes. A thesaurus is a collection of lists of terms highly correlated to one

another, and is generally pre-computed by the document retrieval system [32]. It

can be based on a taxonomy or concept network, on the collection itself, or a com-

bination of these. Taxonomies arrange concepts in parent-child or super-subtype

relationships, as well as listing terms related to those concepts and synonyms for

those terms. They are generally created for a specific domain or text genre, though

more general taxonomies do exist, e.g., WordNet, a collection of 155,000 words

from English. Subject heading classification schemes, such as MeSH (see 1.2.1), can

utilize taxonomic arrangements while retaining thesaurus-like properties.



15

2.1.5 Evaluation of Information Retrieval Systems

When evaluating an information retrieval system, one must keep the primary

function of that system in mind; namely, to satisfy a user’s information need by

finding and providing pieces of information that fit that need. This must be done

both in an attempt to provide the best information possible, and to minimize the

time spent finding that information. Evaluation of this time component is appro-

priate for offline systems, as they have the luxury of spending minutes, hours, or

even days before returning a result. Online, ad-hoc systems, on the other hand,

must return results within the time of a web page loading to be useful; measuring

the exact amount of time taken beyond this is unnecessary. Therefore, we will focus

on measures for the effectiveness of the search.

2.1.5.1 Precision, Recall, and F-Score

Documents in a collection over which an information retrieval system operates

can be divided along two axes: documents which are relevant to a users need or

not, and documents which are retrieved by the users query or not [45]. Relevant

documents which are retrieved are called true positives (tp), and those not retrieved

are called false negatives (fn). Non-relevant documents which are retrieved are

called false positives (fp), and those not retrieved are called true negatives (tn).

One measure of the system’s performance, called precision, is the ratio of relevant

documents to total documents returned to the user. Another measure, recall, is the

ratio of relevant documents returned to total relevant documents in the set. These

measures are calculated as follows [45],

Precision =
tp

tp+ fp
(2.6)



16

Recall =
tp

tp+ fn
(2.7)

A high precision score indicates that the results returned to the user include

a low proportion of non-relevant documents, while a high recall score indicates that

the results include a large proportion of the available relevant documents.

Precision and recall usually exist in opposition to each other. By retrieving

more documents, a system is more likely to retrieve more relevant documents, in-

creasing its recall score; however, the results are likely to be diluted by non-relevant

documents, decreasing its precision. Similarly, by retrieving fewer documents, a

system is less likely to return non-relevant documents, increasing its precision at

the cost of recall. Individual system designers and users must decide whether their

needs are best met by systems focusing on one measure or the other, and tune

those systems accordingly. If both measures are equally important, a measure of

their harmonic mean can provide a single effectiveness number, called an F-score.

F-score is a standard measure used in information retrieval, and is calculated as

follows [32].

F =
2× precision× recall

precision + recall
(2.8)

2.1.5.2 Evaluating Ranked Lists

Precision and recall, as defined above, are calculated over the entire set of

retrieved documents. However, most information recall systems return documents

in sorted order. For a set of n retrieved documents, precision and recall numbers

can be calculated at positions one through n, showing how each measure changes

with respect to the other. The tradeoff between precision and recall can be shown



17

Doc. Position Relevant? Precision Recall

1 Yes 1.000 0.200

2 Yes 1.000 0.400

3 No 0.667 0.400

4 No 0.500 0.400

5 Yes 0.600 0.600

6 No 0.500 0.600

7 Yes 0.571 0.800

8 No 0.500 0.800

9 No 0.444 0.800

10 Yes 0.500 1.000

(a) (b)

Figure 2.1: Sample precision and recall curve

by plotting these values. Table 2.1a shows example precision and recall numbers for

a system retrieving ten documents, five of which are relevant. Figure 2.1b shows the

graph of precision vs. recall. In order to show the “best-case scenario” performance

of the system, an interpolated graph is also shown, computed by interpolating a

drop in precision as equal to the highest precision attained before the next drop

[45].

If the position of all relevant documents in the list is known, a picture of

the system’s recall performance with respect to perfect recall can be constructed.

Again, we use Table 2.1a as an example. In this case, the ideal retrieval scenario

would be for the five relevant documents to be returned before all other documents.

We can plot the difference between this ideal recall curve and the actual recall curve

as in Figure 2.2. The difference between the ideal recall and actual recall is called

normalized recall, and is calculated as [45]

Recallnorm = 1−
∑j

i=1 ri −
∑j

i=1 i

j × (n− j)
(2.9)



18

Figure 2.2: Normalized recall curve

for j relevant documents with document ranks ri. The normalized recall for the

example in Table 2.1a is 0.6.

2.1.5.3 Evaluation for Multiple Levels of Relevance

A core assumption of the above measures is that relevance is a binary judge-

ment; a document is either relevant, or not relevant. These measures cannot incorpo-

rate notions of partial relevance, or relative preference between relevant documents.

Furthermore, these measures require that the relevance of each document in the

retrieved set be judged.

Normalized discounted cumulative gain (NDCG) [29] is an attractive alter-

native to precision and recall based measures. It is measure that can incorporate



19

multiple levels of relevance, and can be calculated at any point in the order of re-

trieved documents. Discounted cumulative gain (DCG) at position i in a ranked

list of documents is calculated as

DCG@i =

 si if i=1

DCG@(i-1) + si

log2 i
otherwise

(2.10)

where si is the relevance score of the document at position i. For example, relevant

documents could receive a score of 2, possibly relevant documents could receive a

score of 1, and irrelevant documents could receive a score of 0. NDCG is calculated

by dividing the DCG vector by an ideal DCG vector, DCGI , calculated from an ide-

ally ranked list (all documents scoring 2, followed by documents scoring 1, followed

by documents scoring 0). Perfect ranking scores an NDCG of 1.0 at all positions.

2.2 Support Vector Machines

Support vector machines (SVMs) are a family of supervised machine learning

methods. The main idea behind the SVM algorithm is to map input vectors into a

feature space of higher dimension, construct a linear decision surface (hyperplane),

and then optimize that hyperplane for generalization [6, 15]. SVMs are used for

classification, regression, and ranking, and are used for related tasks such informa-

tion retrieval and optical character recognition [31, 50]. In particular, the ranking

SVM (Section 2.2.3) is a core component to the work presented in this thesis.

2.2.1 Linear SVMs

SVMs are also known as maximal margin classifiers, as they seek to optimize

the bounds of generalization error by maximizing the margin of the hyperplane sep-

arating the data. For a linearly separable set of examples S = ((x1, y1), . . . , (x`, y`))



20

consisting of data points {xi = (x1, x2, . . . , x`)
′ | xi ∈ X,X ⊆ Rn} and associated

class labels yi = −1 or 1, the optimal hyperplane separating the examples can be

expressed as

f(x,α∗, b∗) =
∑̀
i=1

yiα
∗
i 〈xi · x〉+ b∗ (2.11)

where x is the point to be classified, α∗ is an optimized set of values αi pro-

portional to the number of times an example xi was misclassified during training,

and b∗ is an optimized bias value [11]. When computing the weight vector defin-

ing this hyperplane, only the input points closest to the hyperplane are involved.

These points are called support vectors, denoted SV. Hence, the hyperplane can be

expressed as follows.

f(x,α∗, b∗) =
∑
i∈SV

yiα
∗
i 〈xi · x〉+ b∗ (2.12)

The parameter
∑

i∈SV yiα
∗
i 〈xi〉 is often denoted simply as a weight vector w,

with the hyperplane denoted as (w, b∗) [11]. Optimization for the maximum margin

can be realized by solving the problem

minimize 〈w ·w〉

subject to yi(〈w · xi〉+ b) ≥ 1, i = 1, . . . , ` (2.13)

which produces the following margin [11].

γ =
1

‖w‖
=

(∑
i∈SV

α∗

)−1/2

(2.14)

If the set of examples provided for SVM training is not linearly separable,

the optimization problem cannot be solved. By ‘softening’ the margin, allowing

some examples to be misclassified, we can again solve the optimization [15]. Slack

variables can be introduced which will allow for noisy and outlying examples to

violate the margins. An example (xi, yi) is considered to have violated the margin



21

when yif(xi) > γ. Hence, we define the slack variable for the example:

ξ((xi, yi), f, γ) = ξi = max(0, γ − yif(xi)) (2.15)

and the slack variable vector for the set S:

ξ = ξ(S, f, γ) = (ξ1, . . . , ξ`) (2.16)

We can now solve the optimization on data which is not linearly separable as

minimize 〈w ·w〉+ C
∑̀
i=1

ξi

subject to yi(〈w · xi〉+ b) ≥ 1− ξi, i = 1, . . . , `,

ξi ≥ 0, i = 1, . . . , ` (2.17)

where C is a parameter to be tuned during training [11].

2.2.2 Nonlinear SVMs

Real-world data sets are often not linearly separable, even when allowing for a

soft margin. In this case, we can map the input data points into another space via

a nonlinear mapping function φ : X → F , where X is the original data, or input,

space and F is known as the feature space [6, 11]. With this mapping in place, the

separating hyperplane can be represented as follows.

f(x,α∗, b∗) =
∑
i∈SV

yiα
∗
i 〈φ(xi) · φ(x)〉+ b∗ (2.18)

The inner product 〈φ(xi) · φ(x)〉 is known as a kernel function, written

K(xi,x). Kernels must be positive semi-definite transforms to be valid for use

as an SVM kernel [11]. As this work uses only linear SVMs, we will conclude our

discussion of kernelized SVMs here.



22

2.2.3 Ranking SVMs

Joachims [31] presented a modification to the traditional SVM algorithm which

allows it to rank instances instead of classifying them. Given a collection of data

points ranked according to preference R∗ with two points di, dj ∈ R∗, and a linear

learning function f , we can say

di � dj ⇒ f(di) > f(dj) (2.19)

where � indicates that di is preferred over dj. We can define the function f

as f(d) = w · d, where the following holds true.

f(di) > f(dj)⇔ w · di > w · dj (2.20)

The vector w can be learned via the standard SVM learning method using

slack variables as in 2.2.1, expressed as follows.

minimize 〈w ·w〉+ C
∑

i,j∈|R|

ξij

subject to ∀(di, dj) ∈ R∗ : w · di ≥ w · dj + 1− ξij

∀(i, j) : ξij ≥ 0 (2.21)

Discovery of the vectors defining the hyperplane, called ranking vectors, and

the generalization of the ranking SVM is done differently [53]. For the sake of

explanation, we assume that the data are linearly separable, and therefore the ξij

are all equal to 0. In this case, we can view the ranking function as projecting the

data points onto the separating hyperplane. In this case, the ranking vectors are the

points di and dj nearest each other on the hyperplane. Generalization is achieved by

calculating w to maximize the distance between these closest points. The distance

between these points is calculated as
w(di−dj)

‖w‖ . Taking this as our margin γ, we can,

as with the classification SVM algorithm, maximize the margin by minimizing ‖w‖.



23

2.2.4 SVMs and Information Retrieval

SVMs have proven useful for information retrieval tasks similar to the one pro-

posed here. Drucker et al. [17] compared the use of SVMs for relevance feedback

to the Rocchio [44] and Ide [28] algorithms, and found that SVMs outperformed

both. Cao et al. [10] looked specifically at the problem of using SVMs for retrieval

and ranking of documents. One important finding of theirs relevant to this work is

that while an information retrieval system ought to be optimized for ranking the

most preferable documents, SVMs optimize generally for both high and low docu-

ment rankings. Ranking SVMs have also been used to learn ranking functions from

implicitly generated feedback [31, 42]. In [31], Joachims learned ranking functions

from search engine log files, using the clickthrough data from users as a way to im-

plicitly gather preference data. Results showed that models learned in this fashion

were effective at improving retrieval.

2.3 Active Learning

Active learning describes a learning method wherein the learning algorithm it-

self has some control over which examples are added to its training set. Specifically,

we need to ask a user to provide labels for some number of unlabeled examples. The

learner chooses these examples based on some measure of learning utility; for ex-

ample, choosing examples which will decrease the region of uncertainty in a learned

function [14]. Repeated rounds of active learning improve both the learned function

and the examples chosen for learning. Taking our previous measure as an example,

the reduction in the region of uncertainty produces a function with better general-

ization power; however, reducing the region of uncertainty has an added benefit of



24

leaving behind only examples which continue to contribute to uncertainty.

2.3.1 SVMs and Active Learning

Much of the literature on active learning for SVMs has focused on classifica-

tion, as opposed to ranking [19, 49]. Brinker [7] applied active learning to learning

ranking SVMs; however, this research focused on learning label ranking functions,

which is a fundamentally different task from document ranking. While document

ranking attempts to impose an ordering on a set of documents, label ranking at-

tempts to determine the preferred ordering of a fixed set of alternatives (labels)

for a given input instance. Tong and Chang [48] used pool-based active learning

for image retrieval. Their method of selecting examples for labeling was based on

the finding that by choosing examples which shrink the size of the version space in

which the optimal weight vector ~w can lie, the SVM learned from those examples

will approximate ~w. Therefore, examples are chosen which will most nearly bisect

the version space they occupy. This was achieved in practice by choosing examples

based on their proximity to the SVM boundary; examples close to the boundary are

likely to be more centrally located in the version space, and are thus more likely to

bisect it.

2.4 Learning to Rank from Preferences

Yu [53] constructed a system similar to the one to be presented here, operating

over real estate data, and noted that methods such those in [49] could not be

extended to learning ranking SVMs. As the ranking problem is more complex

than the classification problem, selective sampling for learning ranking SVMs was

conducted by selecting the most ambiguously ranked examples for labeling. This



25

was done by noting that ambiguity in ranking could be measured based on how

similarly the examples were ranked, with the closest pairs of examples being the

most ambiguous. This method for selection is directly analogous to that in [49],

even though it does not address reduction in version space; just as the support

vectors in a classifying SVM are those examples closest to the SVM boundary, the

support vectors in a ranking SVM are those examples that are most closely ranked.

You and Hwang [52] used a similar framework and data set to learn ranking in a

context-sensitive manner. Both of these works focused on general data retrieval,

however, as opposed to focusing on document retrieval.

Cohen, Schapire and Singer [13] modeled the ranking problem as a directed

graph G = (V,E) with instances as the graph’s vertices and the weight on an edge

between vertices Eu,v representing the strength of the preference of u over v. The

problem was split into two steps, i.e., learning the weights and then constructing

a ranking from the graph, and two methods for addressing this latter step were

introduced. Independent of ranking was the learning method, based on the Hedge

algorithm [21], which learned by updating weights based on expert input. The first

ranking algorithm was a greedy algorithm which computed the difference between

the total weight leaving a vertex and the total weight entering it, with larger values

indicating greater overall preference. The second ranking algorithm improved upon

the first by separating strongly connected vertices into separate ranking problems,

and combining the resulting rankings.

Burges et al. [9] used neural networks to rank using preferences by modeling

a probabilistic cost function for pairs of ranked instances. Cost in this case was

modeled as the cross-entropy cost between the known ranking of the pair and the

probability that the model will produce that ranking. The authors then showed how



26

these probabilities can be combined, allowing for computation of a cost function for

preference pairs. A neural network training algorithm was then implemented, using

the gradient of this function as an updating rule for the network’s weights.

Har-Peled et al. [24] formulated the problem in terms of constraint classifi-

cation using pairwise preferences. Specifically, given a set of instances and a set of

labels, the task is to find a function which will produce an ordering of the labels for

each instance. The authors achieve this by learning a binary classification model

Mi,j for each pair of labels yi, yj, with Mi,j predicting yi � yj. The output from

each classifier is tallied as a vote for the preferred label, and the labels are ranked

according to these votes.



27

CHAPTER 3

DATA COLLECTIONS

In this chapter, we give an overview of the data collections used in this thesis.

The biomedical data is used in the simulations found in Chapter 5 as well as the

user study in Chapter 7. The enterprise data set is used in the simulations found

in Chapter 6.

3.1 Biomedical Data Collections

3.1.1 MEDLINE

As stated in Section 1.2, MEDLINE is a database of bibliographic references

in biomedicine and health sciences, collected and curated by the NLM. Citations

are taken from approximately 5,200 sources (mostly journals) in 37 languages, with

the majority of journals selected for inclusion by a committee set up by the Na-

tional Institutes of Health (NIH). Other sources are included based on NLM or NIH

priorities (e.g., AIDS research). Dates covered range from 1949 to the present, with

some older material. The database currently contains over 16 million references,

with between two and four thousand added each week. 670,000 references were

added in 2007.

MEDLINE’s subject coverage is extensive. It covers areas ranging from public

heath policy to clinical care to bioengineering research, from humans to plants to

bacteria. The target audience for MEDLINE is the biomedical community at large,

including researchers, clinicians, educators, and amateurs. Most references include

full citation data, as well as the abstract for the reference. Many references also

contain links to the full article.



28

Figure 3.1: Sample view of the results page from PubMed. Inset: document ranking
options.

Searching MEDLINE is done most often via Entrez PubMed, the NLM’s search

engine operating over the database1. Figure 3.1 shows an example of a results page

from the PubMed search interface. While it is a robust retrieval system, PubMed

lacks relevance-based ranking of search results. Users are limited in their choice

of results sorting to date of publication, author names, or journal of publication.

This leads to information overload for users of the system. As mentioned before,

this is partly due to the size of the MEDLINE database; for example, a search

for “heart disease” returns over eight hundred thousand results. This can lead to

a “search boomerang”, where users alter their search queries with more specific

criteria (resulting in too few results), then relaxing their criteria (resulting in too

many), repeating until a reasonably sized result set is obtained.

1http://www.ncbi.nlm.nih.gov/sites/entrez



29

3.1.1.1 MeSH Terms

To assist users in navigating through MEDLINE’s wealth of information, each

reference in the database is tagged with a number of MeSH terms. The preface to

[38] states that, “The Medical Subject Headings (MeSH) thesaurus is a controlled

vocabulary produced by the National Library of Medicine and used for indexing,

cataloging, and searching for biomedical and health-related information and doc-

uments.” The terms themselves are heterogeneous, and are of three types. De-

scriptors, or main headings, cover the content of the reference, as well as metadata

such as the publication type and components (e.g., clinical trial, editorial, historical

article, etc.) and the country of the reference’s origin. Qualifiers, or subheadings,

are used with descriptors to group together references dealing with a particular as-

pect of the descriptor; for example, pairing the qualifier “abnormalities” with the

descriptor “heart” would indicate that the reference in question is concerned with

congenital defects in the heart, as opposed to the heart itself. Finally, Supplemen-

tary Concept Records, or SCRs, catalogue specific drugs and chemicals referenced

in the article. Currently, there are 25,186 MeSH descriptors, with 83 qualifiers and

over 180,000 SCRs. References are manually tagged by human annotators.

MeSH is arranged hierarchically in 16 trees, grouped by the most general

category of the descriptor. There is a tree for descriptors relating to parts of the

anatomy, another for organisms, another for techniques and equipment, etc. As one

descends a tree, the descriptors become increasingly specific. Figure 3.2 shows a

sample from subtree A01 - Body Regions, the first subtree in tree A - Anatomy.

The position of the entry “Toes” indicates that is more general than “Hallux”, but

more specific than “Forefoot, Human”, which is itself more specific than “Foot”.

Searching MEDLINE with MeSH terms can be done by entering the MeSH



30

Body Regions [A01]
...
Extremities [A01.378]

...
Lower Extremity [A01.378.610]

Buttocks [A01.378.610.100]
Foot [A01.378.610.250]

Ankle [A01.378.610.250.149]
Forefoot, Human [A01.378.610.250.300]

Metatarsus [A01.378.610.250.300.480]
Toes [A01.378.610.250.300.792]

Hallux [A01.378.610.250.300.792.380]
Heel [A01.378.610.250.510]

Hip [A01.378.610.400]
Knee [A01.378.610.450]
Leg [A01.378.610.500]
Thigh [A01.378.610.750]

Figure 3.2: Sample MeSH hierarchy

‘‘diabetes mellitus’’[MeSH Terms] OR

(‘‘diabetes’’[All Fields] AND ‘‘mellitus’’[All

Fields]) OR ‘‘diabetes mellitus’’[All Fields]

OR ‘‘diabetes’’[All Fields] OR ‘‘diabetes

insipidus’’[MeSH Terms] OR (‘‘diabetes’’[All

Fields] AND ‘‘insipidus’’[All Fields]) OR

‘‘diabetes insipidus’’[All Fields]

Figure 3.3: Full translation of the query “diabetes”

term into a PubMed search, just as one would any other search term. A mapping

of 160,000 common terms to their synonymous MeSH headings is used along with

the PubMed query system to expand and refine the user’s query. Figure 3.3 shows

the full PubMed translation of the query “diabetes”.



31

3.1.2 OHSUMED

OHSUMED is a collection of MEDLINE citations, created in order to carry

out information retrieval experiments on MEDLINE [26]. It is composed of the re-

sults of 106 queries run against a five-year span of MEDLINE documents. Queries

were generated from a questionnaire filled out by participants in the study, over

a ten-month period, filtering out duplicate topics and author searches, as well as

queries with inadequate information for replication by annotators. Eleven medical

librarians and eleven physicians, all familiar with searching MEDLINE, replicated

the searches and judged the retrieved references for relevance. Of 348,566 available

references from 270 medical journals, 16,140 query-document pairs were retrieved,

with the 12,565 unique pairs annotated for relevance. Pairs were classified as def-

initely, partially, or not relevant, with 69.3% annotated as not relevant, 16.3%

partially relevant, and 14.3% relevant. Five queries returned no citations judged

relevant by the annotators. Inter-annotator agreement, a measure of how closely

any two annotators agreed in their annotations, was calculated by having 11% of

the documents annotated by two people. A kappa statistic of 0.41 was calculated for

agreement, which the authors claim is comparable with other similar experiments.

Queries returned an average of 152.27 documents.

3.1.3 LETOR

LETOR is a benchmark dataset created for information retrieval rank learning

applications [35]. It consists of two parts; the first is based on the .gov dataset from

the 2003 and 2004 TREC Web Track [16], and the second is based on OHSUMED

(see section 3.1.2). We will limit our discussion to the OHSUMED section of

LETOR.



32

LETOR assigns a feature vector to each query-document pair in the OHSUMED

collection. These feature vectors are composed of classical and more recently devel-

oped measures. Both high and low-level features are calculated, where “[l]ow-level

features include term frequency (tf), inverse document frequency (idf), document

length, (dl) and their combinations” [35], and high-level features include measures

such as BM25 [43] and language models [54]. Vectors contain 25 features, 10 low-

level features (L1-L10 in Table 3.1) calculated from the title, the same 10 calculated

again from the abstract, and 5 (H1-H5 in Table 3.2) from combined title-abstract

text for each of the documents.

Benchmarks for ranking learning with LETOR over the OHSUMED data set

have been calculated using two learning methods, RankBoost and Ranking SVM,

achieving NDCG@10 of 0.436 and 0.441 respectively [35]. Ranking quality for the

individual LETOR features can also be calculated. Since each feature corresponds to

a relevance score for a particular query-document pair, a ranking over all documents

in that query can be constructed, and the quality of that ranking calculated using

the interquartile mean NDCG@10 over the 101 queries used (see Section 5.2.1 for

an explanation and motivation for using interquartile mean). Figure 5.5 shows the

ranking quality for each of the 25 LETOR features, with the best performance being

an NDCG@10 of 0.461 from feature 10.

3.2 Enterprise Data Collection

3.2.1 TREC Enterprise 2007

TREC, the Text Retrieval Conference, began in 1992. Co-sponsored by the

National Institute of Standards and Technology and the Department of Defense,

it purpose is “to support research within the information retrieval community by



33

Table 3.1: Calculation of low-level LETOR features

Feature Source Calculated as...

L1 tf [2]
∑

qi∈q∩d c(qi, d)

L2 [37]
∑

qi∈q∩d log(c(qi, d) + 1)

L3 Normalized tf [2]
∑

qi∈q∩d
c(qi,d)
|d|

L4 [37]
∑

qi∈q∩d log( c(qi,d)
|d| + 1)

L5 idf [2]
∑

qi∈q∩d log( |C|
df(qi)

)

L6 [37]
∑

qi∈q∩d log(log( |C|
df(qi)

))

L7 [37]
∑

qi∈q∩d log( |C|
c(qi,C)

+ 1)

L8 [37]
∑

qi∈q∩d log( c(qi,d)
|d| log( |C|

c(qi,C)
) + 1)

L9 tf ∗ idf [2]
∑

qi∈q∩d c(qi, d) log( |C|
df(qi)

)

L10 [37]
∑

qi∈q∩d log( c(qi,d)
|d|

|C|
c(qi,C)

+ 1)

Table 3.2: Calculation of high-level LETOR
features

Feature Source

H1 BM25 score [43]

H2 log(BM25 score) [43]

H3 LMIR with DIR smoothing [54]

H4 LMIR with JM smoothing [54]

H5 LMIR with ABS smoothing [54]



34

providing the infrastructure necessary for large-scale evaluation of text retrieval

methodologies.”2 Each year, the TREC program committee decides on a number

of areas, or tracks, for research, and defines a number of tasks for each track as

well as a collection of documents for each track. One of the tracks for 2007 was

an enterprise search track. “Enterprise” in this case refers to any large business

or similar organization, in this case the Australian Commonwealth Scientific and

Industrial Research Organization (CSIRO) [4]. There were two tasks for this track,

both based on the idea of providing resources to construct a “missing overview

page”, in which a user is tasked with creating an informative web page for an

existing past or present CSIRO research project. The first was a document search

task, requiring participants to find key documents explaining the given project. The

second was a staff search task, requiring participants to identify key CSIRO staff

members (specifically, their email addresses) for the given project. We will limit

our discussion to the document search task.

The projects for which these hypothetical overview pages would be constructed

were defined as a set of 50 topics, each consisting of a keyword-style query, a narra-

tive describing the topic, some URLs pointing to example web pages informative on

the topic, and the email addresses of some people involved in the topic. Participants

were allowed to use the query and narrative for their submitted retrieval runs if their

systems used no feedback; feedback-based systems were allowed to used queries and

the example web pages. The data collection for the TREC Enterprise 2007 track

was constructed from a crawl of the csiro.au website. This yielded a collection of

370,715 documents (4.2 gigabytes). Though largely composed of web pages, all

public documents including PDF files, videos, and even some geo-positioning data

2http://trec.nist.gov/overview.html



35

were harvested. Each document collected included header information, such as the

URL of the document, its date of collection, and the type of content represented

(e.g., ‘text/html’, ‘video/x-ms-asf’).

21,532 documents potentially relevant to the 50 topics were retrieved to create

a set of 33,813 topic-document pairs used to evaluate systems participating in the

track. Annotation was done by TREC Enterprise participants, classifying pairs as

definitely, partially, or not relevant, with 76.9% annotated as not relevant, 12%

partially relevant, and 11% relevant. Each pair was annotated by at least two

different annotators. A later study compared participant annotation with expert

annotation, reporting kappa statistics of 0.39 and 0.42 for relevant and not relevant

documents, respectively [3]. Partially relevant annotations achieved agreement of

0.19, indicating that these judgements may not be completely reliable. The queries

returned an average of 676.28 documents.

3.2.2 Dublin Core Metadata

Just as our biomedical data included metadata describing the documents in

the set, some of the CSIRO documents included metadata, adhering to the Dublin

Core (DC) metadata framework. The Dublin Core Metadata Initiative is “an open

organization engaged in the development of interoperable metadata standards that

support a broad range of purposes and business models,”3 and defined a set of fifteen

DC metadata elements in 1995. These elements are used to tag documents with

information such as the document’s creator, the date it was created, the language in

which it is written, etc. [18]. Certain non-core elements, such as keywords, are also

used in the CSIRO set. 4,738 documents comprising 6,029 topic-document pairs

3http://dublincore.org/



36

have at least one element of DC metadata.



37

CHAPTER 4

DESCRIPTION OF SYSTEM AND SIMULATION FRAMEWORK

Here, we present a domain-independent overview of our framework for learn-

ing a function to produce such a relevance ranking from feedback provided by the

user. As this is an online task, two factors beyond raw system performance must

be addressed. First, the system must perform well enough to provide the user a

reasonable search experience, both in terms of performance and in speed. Second,

the amount of feedback required for learning must be a reasonably small fraction of

the number of search results. If either of these factors are not well addressed, the

system will provide no benefit to users over traditional search engines. We choose

to employ ranking SVMs for rank function learning because of their performance in

this area [10, 31, 53]. SVMs also provide reasonable speed for learning and ranking;

empirical data supporting this claim is presented in Chapter 7. To ensure users will

have to provide as little feedback as possible, we employ active learning to choose

examples that will be most useful for learning [14].

The system works as follows (see Figure 4.1). A user with an information need

formulates that need as a query to an existing information retrieval source, which

may or may not return ranked results. A small number of results are shown to the

user, who indicates preference for or against those results. Those preference scores

are then used to create a small training set for a machine learning method which

produces a ranking function. That function then ranks the retrieved documents. A

quality measure is consulted to decide whether or not the process should finish. If

so, the ranked results are returned to the user. If not, another set of documents is

chosen and shown to the user for feedback, and the process repeats.



38

Figure 4.1: Illustration of learning ranking functions from user feedback



39

The framework consists of three variable components we wish to investigate

for their effects on ranking performance: how examples are chosen (Section 4.4),

the amount of feedback elicited (Section 4.5), and the criterion for stopping the

feedback-learning process (Section 4.6). These components will be the subject of

the experiments discussed in Chapters 5 and 6.

4.1 Initial Retrieval

We take initial retrieval as given. As our system is in essence a reranking

system, we assume that the input to the system is a set of documents which has ei-

ther been retrieved by an information retrieval system used as an industry standard

(such as PubMed, described in Section 1.2), or prepared as a testbed for information

retrieval systems (such as the TREC Enterprise 2007 data set, described in Section

3.2).

4.2 The Feedback Round

A feedback round is one iteration of choosing examples for feedback, requesting

feedback from the user, learning from the feedback, and checking the stopping

criterion. Future references will be made to this sequence of steps as a performance

measure, with number of feedback rounds used as one measure of how much overhead

the user has incurred using the system. The number of rounds multiplied by the

number of examples seen per round gives the total number of examples seen, which

is the other overhead measure used.

4.3 Ranking

We learn and rank using ranking SVMs with a linear kernel, as described

in Section 2.2.3. Features used for learning will be depend on the document set



40

over which retrieval is conducted, and are described in Sections 5.1 and 6.1. Data

collection for ranking SVM learning is done cumulatively; the user’s feedback on

the examples presented is added to feedback from previous rounds, with learning

done over the entire accumulated set of feedback. Default values for learning and

ranking (margin size, error weighting, etc.) are used1.

4.4 Choosing Examples

In order to learn a ranking function, we require a training set. This set will be

provided to us by the user in the form of explicit preference feedback on a subset of

the retrieved documents. To ensure that we are asking for user feedback on as few

examples as possible, we choose this subset via active learning (Section 2.3). Active

learning techniques employed will be the subject of experimentation, described in

their respective sections.

4.5 Eliciting Feedback

Feedback is elicited by asking the user to rate a document’s relevance to

his/her information need. We allow users to express preference on a neutral point

scale (“yes”, “maybe”, “no”), rather than using a forced-choice (“yes or no”)

method, as the former shows higher measurement reliability [12]. The number of

examples presented for feedback in each round may influence both how quickly the

ranking function is learned, and the quality of the ranking function. The amounts

of feedback elicited for individual experiments are described in their respective sec-

tions.

In Chapter 5, feedback is simulated using scores from the OHSUMED data

1See http://svmlight.joachims.org/



41

set (Sec. 3.1.2). In Chapter 6, feedback is simulated using scores from the TREC

Enterprise 2007 data set (Sec. 3.2.1). In Chapter 7, feedback is given by live users.

4.6 Convergence Threshold

At some point, feedback rounds must terminate. Rather than arbitrarily

choosing a number of rounds or amount of feedback required before termination,

feedback ends when the lists produced by the ranking function appear to be converg-

ing towards a stable list. Our convergence criterion is based on the Kendall tau rank

correlation coefficient, calculated between on the current and immediately previous

orderings produced by the ranking function. Once the correlation between these

rankings exceeds a certain threshold, feedback rounds terminate. Again, the ranges

of thresholds investigated in different experiments are detailed in their respective

sections.

4.6.1 The Kendall Tau Rank Correlation Coefficient

The Kendall tau rank correlation coefficient calculates the similarity between

two different rankings of one set of objects [1]. The two rankings, O1 andO2 will each

produce two sets of ordered pairs, P1 and P2. The Kendall’s tau measure seeks to

measure the difference between the rankings in terms of how many of these ordered

pairs are different, called the symmetric difference distance d∆(P1,P2). We wish to

normalize the concordance score between 1 for perfectly identical rankings, and -1

for perfectly reversed rankings. Each set of ordered pairs contains 1
2
N(N − 1) pairs

(where N is the number of objects); hence, the maximum d∆(P1,P2) is N(N − 1),

and the minimum is 0. Therefore, we can calculate the correlation as follows [1]:

τ = 1− 2 ∗ d∆(P1,P2)

N(N − 1)
(4.1)



42

For example, given a set of objects ranked as O1 = [a, b, c, d] and a second

ranking O2 = [a, b, d, c], the pairs of ranked objects are

P1 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}

P2 = {{a, b}, {a, d}, {a, c}, {b, d}, {b, c}, {d, c}}

for O1 and O2 respectively. The set of objects in one set of pairs and not the other

is {c, d}, {d, c}. The symmetric difference d∆(P1,P2) = 2, N = 4, so τ = 1− 2∗2
4(3)= 2

3

,

indicating a strong correlation.



43

CHAPTER 5

SIMULATIONS IN THE BIOMEDICAL DOMAIN

In this chapter, we test our framework experimentally via simulation, us-

ing the OHSUMED data set (described in Section 3.1.2). The five queries which

returned no relevant citations have been excluded from the simulations. All experi-

ments were run ten times per query, and the results averaged. We evaluate ranking

performance using normalized discounted cumulative gain (NDCG) as described in

Section 2.1.5.3. We compute NDCG@10 for our evaluation. NDCG is a commonly

used metric for these applications [4, 9, 10, 35]. Furthermore, a retrieval size of

10 is considered the “first page” of results from a search results, and is therefore a

reasonable position to measure ranking performance [20]. We evaluate user over-

head by counting the number of feedback rounds to produce a given ranking, as

well as the total number of documents used for feedback. The interquartile mean is

calculated for both metrics over the 101 queries (motivated in Section 5.2.1).

5.1 Adapting the General Framework to the
Biomedical Domain

Adapting our general framework to simulation in the biomedical domain be-

gins with initial retrieval. PubMed, as described in Section 3.1.1 is an excellent

retrieval system, employing many recall-boosting strategies such as term expansion

and synonym matching, which we do not care to replicate. For our experiments, we

use the existing OHSUMED data set (described in Section 3.1.2) and perform no

retrieval on our own.

Two sets of features are used for learning. For the first set, we use the features

from LETOR (Section 3.1.3). We leave these features intact, with no modification.



44

These textual features model the content of the query-document pair. The sec-

ond set is built from the MeSH descriptors (Section 3.1.1.1) for the OHSUMED

documents. Each vector is composed of 25,186 binary features, with each feature

indicating inclusion of the MeSH descriptor. These features model the metadata

assigned to the documents by the MeSH annotators. It should be noted that MeSH

terms offer an improvement over the textual features, in that annotators assign-

ing MeSH terms to citations in MEDLINE have access to the entire article, while

LETOR features are limited to the title and abstract.

5.2 Simulations Using OHSUMED

Our initial simulation experiment is designed to explore the variable compo-

nents of the user preference feedback framework described in Chapter 4 operating

in the biomedical domain, as well as investigating the use of feature vectors built

from textual vs. metadata features as described in Section 5.1.

We employ two active learning methods for these simulations. We use ran-

dom sampling, simply choosing unseen examples at random, as a lower bound for

determining active learning effectiveness. The first active learning method is top

sampling. As discussed in [10], ranking functions should have their performance

optimized towards top-ranked documents. Therefore, top sampling chooses unseen

documents ranked highest by the current ranking function at each round for feed-

back. The other active learning method is mid sampling. Similar to Cohn et al. [14],

we wish to reduce uncertainty in our ranking function. A learned ranking function

will rank the best and worst documents with great confidence, but less so those

in the middle. These middle-ranked documents are, conceptually, the ones ranked

with the least confidence; therefore, learning from them should result in a stronger



45

model.

We hypothesize that both top and mid sampling will outperform random

sampling, both in ranking performance and overhead cost. We further hypothesize

that top sampling will outperform mid sampling in ranking performance, as mid

sampling is training to improve overall performance as opposed to focusing on the

performance of highly-ranked documents.

The amount of feedback collected varies between one and five examples per

round. We hypothesize that collecting more examples per round will result in better

performance, as well as fewer total examples needed to achieve that performance;

more examples should produce stronger models at each round, resulting in better

examples selected for feedback in the next round, speeding up the entire process.

The convergence threshold varies between a Kendall’s tau of 0.5 to 0.9, in

increments of 0.1. We hypothesize that greater thresholds will result in better per-

formance, with a commensurate increase in rounds to convergence; as the stopping

criterion becomes more difficult to meet, more preference data will be collected,

producing a stronger ranking function.

5.2.1 Motivation for Using the Interquartile Mean

When analyzing the results from the 101 queries for the various methods, con-

vergence thresholds, and examples per round, it was found that the distribution of

performance values did not follow a normal distribution. To the contrary, at higher

levels of performance the results were strongly skewed away from the top perform-

ing queries. Figure 5.1 shows this effect for top sampling at the 0.9 convergence

threshold. We quantify the magnitude of this deviation by calculating the skewness



46

of the distribution,

1

n

∑
xi∈x

(
(xi − x̄)

s

)3

(5.1)

where n is the sample size, x̄ is the sample mean, and s is the sample size [51].

Table 5.1 shows skewness calculated for top sampling with random seeding, across

all thresholds and examples per round.

Figure 5.1: Box and whisker plot of the distribution of performance across the 101
queries for top sampling at a convergence threshold of 0.9, across all examples per
round.

The modest skewness encountered at lower thresholds, correlating with lower

performance (see section 5.2.2), increased greatly at higher thresholds, indicating

a “long tail” of poorly performing queries away from the large number of queries

performing well.

In order to more accurately reflect the performance of the ranking functions

across the 101 queries, we choose to report the interquartile mean of the performance

metrics as opposed to the mean. The interquartile mean can be calculated by



47

discounting the top and bottom quarter of the ranked scores, calculating the mean

of the inner quarters. Generally, this can be expressed as

2

n

3n/4∑
i=(n/4)+1

xi (5.2)

Table 5.1: Skewness calculated across all thresh-
olds and examples per round for top sampling

Threshold
Examples per round

1 2 3 4 5

0.5 0.567 0.393 0.303 0.092 -0.036

0.6 0.473 0.237 0.115 -0.196 -0.234

0.7 0.417 0.153 -0.057 -0.674 -0.919

0.8 0.335 -0.194 -0.786 -0.980 -1.466

0.9 -0.106 -1.116 -1.506 -1.838 -2.182

5.2.2 Results and Discussion

Table 5.2: NDCG calculated across all queries at positions 1 through 10 for ranking
SVMs trained on all data available for a query.

@1 @2 @3 @4 @5 @6 @7 @8 @8 @10

MeSH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LETOR 0.748 0.679 0.640 0.620 0.600 0.600 0.585 0.586 0.591 0.589

Learning from MeSH features clearly outperformed learning from LETOR

features in ranking performance. An upper bound for performance comparison was

calculated by ranking documents for each OHSUMED query using a ranking SVM

learned from all documents in the query, for both MeSH and LETOR feature vectors.

Table 5.2 shows SVMs learned from MeSH terms yielded perfect interquartile mean

ranking performance, vastly outperforming SVMs learned from LETOR features.



48

A performance gain is to be expected, as the MeSH terms are tailored to this

data; however, we did not expect the gain to be this great. This trend continues

in the active learning experiments. As shown in Tables 5.3-5.5, across all sampling

methods, thresholds, and examples per round, ranking performance of SVMs learned

from MeSH features outperform their LETOR counterparts. For thresholds above

0.5, though LETOR SVMs consistently reached convergence before MeSH SVMs

(indicating a much lower overhead), the performance was consistently poor.

Overall, our results are encouraging. We have achieved an NDCG@10 ranking

performance of 0.970 after an average of 13.55 feedback rounds and 67.74 examples

seen, using top sampling with five examples per round and a convergence threshold

of 0.9 (Table 5.5).

Top sampling produced better ranking functions than the other two methods.

Curiously, mid sampling performed worse than random sampling. This may be

due to the fact that mid sampling is more likely to encounter documents ranked

as possibly relevant as opposed to definitely relevant or irrelevant than random

sampling. Mid sampling did incur less overhead than the other active learning

methods, but it appears as though it converged to a poor final ranking.

In all cases, a greater number of examples per round produced better ranking

performance. This is to be expected, as more examples per round yields a larger

set of training data (see Figure 5.3, Section 5.6). More examples per round also

decreased rounds to convergence; however, the decrease in the number of rounds

was never great enough to lead to a decrease in the total number of examples seen.

As expected, higher thresholds for convergence resulted in higher ranking per-

formance, at the cost of more feedback rounds. While performance climbed steadily,

there was a marked jump in overhead between thresholds of 0.8 and 0.9.



49

Table 5.3: Averaged performance for random sampling method, for all examples per
round and thresholds. The top subtable reports NDCG@10, middle reports number
of rounds until the convergence threshold is met, bottom reports number of examples
seen until convergence.

Random Sampling

NDCG@10

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 0.426 0.472 0.511 0.544 0.560 0.359 0.369 0.384 0.393 0.405

0.6 0.442 0.482 0.519 0.552 0.592 0.358 0.373 0.388 0.401 0.411

0.7 0.455 0.484 0.554 0.585 0.592 0.361 0.372 0.392 0.407 0.425

0.8 0.467 0.525 0.604 0.653 0.693 0.358 0.376 0.405 0.412 0.422

0.9 0.502 0.611 0.673 0.739 0.783 0.370 0.384 0.419 0.440 0.456

Rounds to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.607 3.781 3.145 2.951 2.840 7.329 4.823 3.804 3.386 3.088

0.6 5.634 4.007 3.547 3.359 3.318 7.461 4.533 3.858 3.540 3.190

0.7 6.245 4.719 4.363 4.147 4.075 7.672 4.788 4.223 3.736 3.601

0.8 7.169 5.871 5.816 5.889 5.931 7.760 5.284 4.612 4.326 4.144

0.9 10.29 9.494 10.02 10.97 11.20 9.205 7.073 6.681 6.640 6.618

Total Examples to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.607 7.562 9.435 11.80 14.20 7.329 9.646 11.41 13.54 15.44

0.6 5.634 8.015 10.64 13.44 16.59 7.461 9.065 11.58 14.16 15.95

0.7 6.245 9.439 13.09 16.59 20.37 7.672 9.576 12.67 14.94 18.00

0.8 7.169 11.74 17.45 23.55 29.66 7.760 10.57 13.84 17.30 20.72

0.9 10.29 18.99 30.07 43.86 56.01 9.205 14.15 20.04 26.56 33.09



50

Table 5.4: Averaged performance for mid sampling method, for all examples per
round and thresholds. The top subtable reports NDCG@10, middle reports number
of rounds until the convergence threshold is met, bottom reports total number of
examples seen until convergence.

Mid Sampling

NDCG@10

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 0.442 0.469 0.488 0.514 0.539 0.322 0.339 0.355 0.368 0.364

0.6 0.433 0.487 0.502 0.518 0.543 0.325 0.344 0.354 0.366 0.364

0.7 0.449 0.486 0.523 0.550 0.568 0.332 0.339 0.352 0.369 0.378

0.8 0.460 0.516 0.543 0.593 0.607 0.328 0.345 0.371 0.369 0.389

0.9 0.490 0.567 0.627 0.653 0.664 0.330 0.349 0.382 0.406 0.427

Rounds to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.523 3.567 3.110 2.912 2.697 5.713 3.686 3.253 2.884 2.779

0.6 5.750 3.972 3.437 3.179 3.092 5.710 3.794 3.236 3.049 2.908

0.7 6.059 4.506 3.963 3.858 3.722 5.582 3.830 3.579 3.406 3.344

0.8 7.123 5.587 5.175 5.026 4.904 6.223 4.468 4.050 3.924 3.923

0.9 9.747 9.156 9.120 8.754 8.733 7.145 5.629 5.768 5.680 5.712

Total of Examples to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.523 7.135 9.330 11.65 13.48 5.713 7.372 9.760 11.54 13.89

0.6 5.750 7.944 10.31 12.71 15.46 5.710 7.587 9.708 12.20 14.54

0.7 6.059 9.012 11.89 15.43 18.61 5.582 7.659 10.74 13.62 16.72

0.8 7.123 11.17 15.53 20.10 24.52 6.223 8.936 12.15 15.70 19.61

0.9 9.747 18.31 27.36 35.02 43.66 7.145 11.26 17.30 22.72 28.56



51

Table 5.5: Averaged performance for top sampling method, for all examples per round
and thresholds. Top subtable reports NDCG@10, middle reports number of rounds
until the convergence threshold is met, bottom reports total number of examples seen
until convergence.

Top Sampling

NDCG@10

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 0.439 0.497 0.559 0.617 0.667 0.347 0.368 0.387 0.423 0.436

0.6 0.459 0.527 0.601 0.678 0.725 0.346 0.369 0.401 0.432 0.451

0.7 0.471 0.573 0.665 0.762 0.833 0.355 0.389 0.426 0.446 0.458

0.8 0.523 0.663 0.794 0.865 0.910 0.359 0.396 0.437 0.468 0.491

0.9 0.652 0.840 0.913 0.948 0.970 0.381 0.446 0.484 0.538 0.534

Rounds to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.639 3.800 3.460 3.288 3.234 6.001 3.888 3.292 3.051 2.986

0.6 5.677 4.329 4.160 4.305 4.079 5.645 3.960 3.590 3.377 3.144

0.7 6.459 5.539 5.546 5.564 5.584 6.062 4.315 3.792 3.565 3.455

0.8 8.228 7.970 8.354 8.214 8.030 6.514 4.793 4.452 4.308 4.322

0.9 14.79 15.32 15.20 14.66 13.55 7.958 6.602 6.678 6.732 6.173

Total Examples to Convergence

Threshold
MeSH LETOR

1 2 3 4 5 1 2 3 4 5

0.5 5.639 7.600 10.38 13.15 16.17 6.001 7.776 9.876 12.20 14.93

0.6 5.677 8.657 12.48 17.22 20.39 5.645 7.921 10.77 13.51 15.72

0.7 6.459 11.08 16.64 22.26 27.92 6.062 8.630 11.38 14.26 17.28

0.8 8.228 15.94 25.06 32.86 40.15 6.514 9.586 13.36 17.23 21.61

0.9 14.79 30.64 45.61 58.64 67.74 7.958 13.20 20.03 26.93 30.87



52

Experiments have shown that our hypotheses regarding ranking performance

regarding sampling methods, examples per round, and convergence threshold are

generally supported, with the exception of the performance of mid sampling. How-

ever, our assumptions regarding the overhead incurred to reach convergence as it

relates to examples per round and ranking performance seem to have been incorrect.

We had initially assumed that while seeing more examples per round would increase

performance, the total amount of overhead required to reach that performance would

decrease as seeing more examples per round would produce a more robust model

at each ranking round, thus allowing the sampling methods to choose better exam-

ples and reducing the total number of rounds to convergence significantly. While

rounds to convergence fell slightly as the number of examples per rounds increased,

the decline was not enough to decrease the total number of examples seen until

convergence as examples per round increased.

This led us to investigate whether the number of examples seen was the dom-

inant predictor of performance. As shown in Figure 5.2, however, the sampling

method used played a greater role in performance. Top sampling provided better

ranking performance than random or mid sampling independent of number of ex-

amples seen, in many cases requiring fewer than half the number of examples to

reach performance similar to the other active learning methods.

A note must be made regarding the convergence threshold. Since termination

is determined as a function of learning, it effectively falls to the active learning

technique to ensure that termination is not premature, as choosing uninformative

examples will cause little to no shift in the ranking function. If this were the case,

the learning process would not fulfill its potential, denied the chance to exhaust

its stock of “good” examples to learn from. The effect of this would be that an



53

Figure 5.2: Comparison of the total number of examples seen to NDCG@10 for
all sampling methods, at thresholds 0.7, 0.8 and 0.9. Markers indicate number of
examples per round, from one to five.



54

active learning method which could potentially perform as well as another method

would have worse performance and fewer total examples seen than a method which

did not end prematurely. Examples of this happening may be present in this work,

especially at high thresholds looking at 4 or 5 examples per round.

We argue that this effect is likely to be minimal. In Figure 5.2, it is clear that

the strict dominance of one active learning method over another is consistent over

all amounts of feedback greater than around 10 documents. If it is the case that

one sampling method would outperform another if both were allowed to continue

learning, it appears as though this would not occur until the amount of feedback

seen by both methods was in the hundreds.

The remainder of our analysis focuses on factors affecting top sampling. Some-

thing to note in Figure 5.2 is that performance gains began leveling off after reaching

an NDCG@10 of around 0.8, requiring increasingly more examples for smaller gains

in performance. Considering the OHSUMED queries returned 152.27 documents on

average, it may appear that decent performance requires feedback on an unreason-

able percentage of the returned data. Recall, however, that queries to MEDLINE

often result in thousands of results. Further investigation is required to see if queries

which return such large results sets require feedback on a similar percentage of doc-

uments, a similar number of documents, or something in between.

We see in Figure 5.3 that increasing examples per round increased the to-

tal number of examples seen before the convergence threshold was reached. This

ran counter to one of our hypotheses; we expected that seeing more examples in

each feedback round would reduce the total number of examples required to meet

the convergence threshold. Note also that higher convergence thresholds strictly

dominate the total number of examples seen as compared to lower thresholds for



55

all values of examples seen per round, showing that increasing the values of these

parameters increases the total number of examples seen.

Figure 5.3: Total number of examples seen vs. examples per round, plotted for all
convergence thresholds.

We must initially conclude, therefore, that examples per round and the conver-

gence threshold may be largely immaterial to the learning process except as driving

the total number of examples seen. A Kendall’s tau rank correlation of 0.993 was

calculated between system performance and number of examples seen, across all

examples per round and stopping thresholds for top sampling. If ranking perfor-

mance is tied only to the active learning method and number of examples seen,

there may simply be a lower bound on the number of rounds required for effective

active learning to take place, requiring a number of examples per round equal to

the number of examples needed to reach the desired ranking performance divided

by this number of rounds. Further investigation is required to determine this lower



56

Table 5.6: Standard deviations in perfor-
mance for top sampling. Italics indicates
standard deviations significantly higher than
the mean standard deviation, while boldface
indicates significantly smaller standard devi-
ations.

Top Sampling

1 2 3 4 5

0.5 0.208 0.216 0.216 0.222 0.213

0.6 0.207 0.213 0.224 0.221 0.215

0.7 0.206 0.223 0.215 0.220 0.215

0.8 0.217 0.220 0.224 0.207 0.191

0.9 0.237 0.225 0.218 0.176 0.160

bound, if indeed it exists.

However, this initial conclusion requires further investigation. Recall that

performance has been calculated as an average over all OHSUMED queries. Table

5.6 shows the standard deviations in the means of the NDCG scores calculated

across all queries, for all thresholds and examples per round for the top sampling

method. We find a mean standard deviation of around 0.212, with this mean having

a standard deviation of around 0.016. At thresholds 0.8 and 0.9, we find standard

deviations which deviate strongly from the mean. At four and five examples per

round, the standard deviations are significantly lower than the mean, indicating

that the performance is more stable across all queries.

5.3 Active Learning by Proximity Sampling

As explained in Section 2.2.3, the ranking SVM seeks to generalize its rank-

ing hyperplane by finding the hyperplane which maximizes the minimum distance

between any two projected points, calculated as
w(di−dj)

‖w‖ . The proximity of these



57

points to each other indicates that the ranking function, mathematically, has the

least confidence regarding their pairwise preference order, and can therefore be

considered the most ambiguous in terms of ranking [53]. Sampling points in this

way is targeted at the the mechanism of SVM optimization, and should produce

high-quality ranking functions with little feedback.

This method of proximity sampling was implemented, and compared with

the best performing method from the first set of simulations, top sampling, and a

baseline, random sampling. Simulations are carried out using MeSH features, with

the convergence threshold and number of examples per round varying as in Section

5.2. We hypothesize that proximity sampling will outperform top sampling.

5.3.1 Results and Discussion

Top sampling strictly dominated the other two active sampling methods (fig.

5.4). Surprisingly, proximity sampling performed only marginally better than ran-

dom sampling. We believe this may be due to the fact that proximity sampling

seeks to optimize the ranking function over the entire ranking function, while top

sampling optimizes for the top-end documents. As we report NDCG at the tenth

position along the retrieved documents, a reasonable cutoff point for a retrieval

task, the top-end optimization produces the better result. The proximity sampling

method may prove more useful in future work (see Chapter 8).

5.4 Nonrandom Seeding of Feedback Rounds

Rather than seeding feedback rounds with random documents, we can seed

with documents that support the feedback process. Specifically, we can support

top sampling by seeding the first round with the highest ranked documents as



58

Figure 5.4: NDCG@10 vs. total examples seen until convergence for proximity
sampling learning experiments. Values are for all sampling methods, thresholds,
and examples per round.



59

Table 5.7: Averaged performance for proxim-
ity sampling method, for all examples per round
and thresholds. Top subtable reports NDCG@10,
middle reports number of rounds until the con-
vergence threshold is met, bottom reports total
number of examples seen until convergence.

Proximity Sampling

NDCG@10

Threshold
Examples per round

1 2 3 4 5

0.5 0.424 0.487 0.493 0.531 0.569

0.6 0.438 0.485 0.525 0.551 0.593

0.7 0.451 0.489 0.543 0.590 0.626

0.8 0.459 0.531 0.589 0.656 0.703

0.9 0.502 0.615 0.701 0.777 0.840

Rounds to Convergence

Threshold
Examples per round

1 2 3 4 5

0.5 5.460 3.739 3.214 2.935 2.879

0.6 5.753 3.990 3.571 3.426 3.269

0.7 6.228 4.623 4.397 4.177 4.085

0.8 7.071 5.941 5.804 5.972 5.879

0.9 9.805 9.339 9.743 10.43 11.17

Total Examples to Convergence

Threshold
Examples per round

1 2 3 4 5

0.5 5.460 7.477 9.642 11.74 14.39

0.6 5.753 7.979 10.71 13.70 16.35

0.7 6.228 9.247 13.19 16.71 20.42

0.8 7.071 11.881 17.41 23.89 29.39

0.9 9.805 18.68 29.23 41.70 55.86



60

ranked by some standard relevance-based ranking method. Many such methods are

available; to choose which methods to test, we used features from the OHSUMED

section of the LETOR learning to rank benchmark data set [35]. Performance for

rankings produced by each LETOR feature is presented in Figure 5.5. The top four

performing LETOR features are used for seeding, i.e., features L4, L8, and L10

calculated over the title, and feature H5. Tables 3.1 and 3.2 in Section 3.1.3 show

how these features are calculated, as well as the portion of the document over which

the measure is calculated.

Figure 5.5: NDCG@10 calculated for rankings produced by the 25 LETOR features.
L1 T through L10 T indicate features L1-L10 calculated over the title, and L1 A
through L10 A indicate features L1-L10 calculated over the abstract.

Simulations are carried out using MeSH features, with the number of examples

per round varying as in Section 5.2 and the convergence threshold set at 0.9. We

hypothesize that nonrandom seeding will reduce the amount of feedback needed to

produce ranking functions that perform similarly to ranking functions learned with



61

random seeding. We do not expect to see an overall increase in performance. Top

sampling with random seeding was used as a baseline.

5.4.1 Results and Discussion

As shown in Table 5.8 and Figure 5.6, nonrandom seeding did indeed produce

functions that performed comparably to those produced by random seeding with

fewer examples. While no initial ranking method clearly dominated the others,

L25 produced the best top-end performance. There was also a modest increase in

top-end performance over random seeding for all nonrandom seeding methods.

Simulating the effect of a round of sampling by asking for initial feedback

on documents ranked by a relevance-based method was especially effective as per-

formance begins leveling off; while proportionally similar amounts of feedback are

required to increase performance for both random and nonrandom seeding methods,

the absolute amount of feedback required to reach this point is much less for the

nonrandom methods, reducing the overall burden for the user.

5.5 Simulation with a Gradient Oracle

OHSUMED judgments are used as an oracle, or perfect knowledge, source

for the simulations, as the judgments were made by a panel of professionals in

the biomedical field. While actual users of this system are likely to be biomedical

professionals as well, it is possible that due to simple human error they will not

provide feedback perfectly in line with their preferences. Furthermore, we would

like non-professionals to be able to use the system as well; their feedback may

include guesses as to the relevance of documents regarding subjects with which

they are uninformed. In order to explore the effects of incorrect feedback on system



62

Figure 5.6: NDCG@10 vs. total examples seen until convergence for nonrandom
seeding methods for all examples per round and at a convergence threshold of 0.9.



63

Table 5.8: Averaged performance for random vs. non-
random seeding methods over all examples per round
at a threshold of 0.9. Top subtable reports NDCG@10,
middle reports number of rounds until the convergence
threshold is met, bottom reports total number of ex-
amples seen until convergence.

NDCG@10

Seeding method
Examples per round

1 2 3 4 5

Random 0.652 0.840 0.913 0.948 0.970

LETOR Feature 4 0.672 0.879 0.948 0.974 0.977

LETOR Feature 8 0.658 0.879 0.940 0.974 0.981

LETOR Feature 10 0.687 0.872 0.958 0.976 0.984

LETOR Feature 25 0.667 0.869 0.958 0.984 0.986

Rounds to Convergence

Seeding method
Examples per round

1 2 3 4 5

Random 14.29 15.32 15.20 14.66 13.55

LETOR Feature 4 13.42 14.49 14.42 14.18 12.90

LETOR Feature 8 13.02 14.38 13.91 14.33 13.09

LETOR Feature 10 13.43 13.96 14.94 14.14 12.87

LETOR Feature 25 14.38 14.56 14.61 13.70 13.28

Examples to Convergence

Seeding method
Examples per round

1 2 3 4 5

Random 14.29 30.64 45.61 58.64 67.74

LETOR Feature 4 13.42 28.98 43.25 56.73 64.51

LETOR Feature 8 13.02 28.76 41.73 57.31 65.47

LETOR Feature 10 13.43 27.93 44.82 56.55 64.33

LETOR Feature 25 14.38 29.13 43.82 54.81 66.41



64

Table 5.9: Averaged results for the gradient oracle experiments.

Gradient Oracle 1.0 0.95 0.90 0.85 0.8 0.75 0.70 0.65 0.60

NDCG@10 0.970 0.861 0.776 0.693 0.633 0.554 0.498 0.444 0.398

performance, we conducted a experiments using a gradient oracle. The gradient

oracle provides correct answers with a certain probability, and incorrect answers for

the remaining probability. For example, if the OHSUMED judges assigned a score

of 1 (“possibly relevant”) to a given query-document pair, a 90% oracle asked to

judged the same query-document pair has a 90% chance of assigning the pair a 1, a

5% chance of assigning the pair a 2, and a 5% chance of assigning the pair a 0. We

conducted these experiments with MeSH feature vectors, using top sampling at a

convergence threshold of 0.9 with 5 examples per round, and using gradient oracle

values from 1.0 to 0.6 at intervals of 0.05.

5.5.1 Results and Discussion

Table 5.9 shows NDCG@10 for the gradient oracle experiments, showing a

clear degradation in performance as the oracle’s quality decreases. A linear interpo-

lation of the points results in a slope of 1.4113, indicating that a drop in feedback

quality creates an even greater drop in performance (see Figure 5.7). A likely rea-

son for this is that poor feedback will be used to generate poor examples in future

rounds, which cripples the sampling process. The primary implication of this find-

ing is that the system will have to implement some form of consistency check if

it is to be used by non-experts, and would be a benefit as well to even the most

knowledgeable and careful professionals.



65

Figure 5.7: NDCG@10 calculated for Gradient Oracle values, dashed line indicates
the line x = y. Note that values along the x-axis are in decreasing order, to better
demonstrate declining performance as the oracle’s accuracy declines.



66

5.6 Conclusion

The experiments presented here show the framework presented for learning to

rank documents with SVMs via user feedback is effective in the biomedical domain.

Simulations show that ranking functions learned in this way perform at levels ap-

proaching perfect ranking with less than half of the available data, indicating that

the top sampling method of active learning is well suited to this task. Sampling

method was clearly shown to be the driving force behind system performance. The

other variable system components, number of examples per round and convergence

threshold, were found not to be directly related to the system’s performance, but

rather indirectly related as they drive the more important factor of total number of

examples seen.

Complex active learning methods for example selection may be unnecessary.

The proximity sampling method, while targeted at the mechanism of ranking SVM

optimization, failed to outperform top sampling, and in fact had performance closer

to random sampling. This is a helpful finding as this framework is designed to be

used in an online ad-hoc search environment, and simple sampling methods such

as top sampling clearly require fewer computing resources than methods such as

proximity sampling.

Seeding ranking rounds with examples ranked via some standard relevance-

based ranking methods provided a modest improvement in system performance.

Though no relevance measure was strictly dominant, all increased top-end perfor-

mance. More importantly, fewer examples were required to reach high-end perfor-

mance.

The findings of the gradient oracle simulations are quite important to the end

goal of an online tool to be used by biomedical professionals, as the framework has



67

been shown not to be robust to “wrong” or inconsistent feedback. Future work

must be done to strengthen the method against such occurrences, especially if the

system is to be used by domain neophytes. Section 8.1.4 expands upon this subject.



68

CHAPTER 6

SIMULATIONS IN THE ENTERPRISE DOMAIN

In order to show that the rank learning framework presented is generally ap-

plicable, as opposed to specifically designed for the biomedical domain, we present

simulations using the CSIRO data set from the TREC Enterprise 2007 track (Sec-

tion 3.2.1). This data set is larger than the MEDLINE data set, with many more

documents associated with each query. In this chapter, we show that the framework

can function successfully over this data set without modification. Furthermore, we

show that increase in the size of the data set and number of documents retrieved

per query do not pose an issue to system performance.

6.1 Adapting the General Framework to the En-
terprise Domain

Again, we perform no live retrieval runs for our enterprise retrieval simulations,

preferring instead to use the CSIRO data set. Feature vectors use available DC

metadata (Section 3.2.2) as binary inclusion features, similar to MeSH terms in

the biomedical simulations (Section 5.1). While many types of DC metadata exist,

the only types in the set of judged documents were “keywords” and “format”.

Only 88 documents had format metadata, so feature vectors were built with the

keywords metadata alone. Since the majority of the documents are not annotated

with metadata, feature vectors also include tf ∗ idf term weighting calculations

for each term appearing in the document, as in [17]; i.e., terms are stemmed and

stopwords are removed.



69

6.2 Simulations Using the TREC Enterprise
2007 Data Set

These simulations are run to explore the efficacy of the general ranking frame-

work on a data set separate from the biomedical domain. Similar to the simula-

tions run in Section 5.2, our simulations use top sampling, the amount of feedback

collected varies between one and five examples per round, and the convergence

threshold is set at 0.9. As we use the performance of systems submitted to TREC

Enterprise 2007 for performance comparison [4], we choose not to investigate the

poorly performing active learning measures and stopping thresholds; as TREC sys-

tems are in competition with each other, we are concerned only with achieving peak

performance. As a threshold of 0.9 with five examples per round achieved nearly

perfect ranking on the biomedical data set (see Section 5.2.2), we assume that we

will see similar results here.

6.3 Results and Discussion

Table 6.1: Averaged performance for top sampling method,
for all examples per round at a stopping threshold of 0.9.

Examples per Round

1 2 3 4 5

NDCG@10 0.350 0.403 0.469 0.499 0.538

Rounds to Convergence 11.32 9.470 9.722 9.250 9.352

Examples to Convergence 11.32 18.94 29.17 37.00 46.76

Again, we evaluate NDCG@10, rounds to convergence, and total examples to

convergence. We use NDCG@10 as a retrieval size of 10 is considered the “first page”

of results from a search results, and is therefore a reasonable position to measure



70

ranking performance [20]. Results indicate that our system does not outperform

the top TREC Enterprise systems [4], performing nearer to the lower performing

systems as shown in Figure 6.1. Our assumption regarding system performance was

shown to be incorrect; the enterprise system’s ranking performance was far below

the that of the biomedical system’s performance, achieving a maximum NDCG@10

of 0.538 as compared to the biomedical system’s best score of 0.970. There are a

number of potential explanations for this finding. First, TREC systems are highly

tuned to the task and data set, whereas our system replicated the design and pa-

rameters of the biomedical simulations. However, TREC systems do not benefit

from user feedback, offsetting this apparent advantage enjoyed by TREC systems.

Second, and most importantly, the excellent performance on the biomedical data set

was due in large part to the high quality of MeSH annotations; fewer than one-fifth

of the enterprise query-document pairs had any metadata of any kind.

Figure 6.1: Performance comparison with TREC Enterprise 2007 systems, our per-
formance in grey.



71

In fact, this system’s performance is quite comparable to that of the biomedical

simulation with LETOR features using top sampling (see Table 5.5 in Section 5.2.2).

And while the average OHSUMED query returned 152.27 documents, the average

TREC Enterprise query returned 676.28 documents. Table 6.2 compares system

performance to the average percentage of data used to achieve that performance for

simulations running over both OHSUMED and TREC Enterprise data sets. Note

that the similar performance is achieved by the TREC Enterprise system despite

utilizing proportionally far less data. This shows that the number of examples

needed to reach a certain level of performance stayed generally consistent across the

two data sets.

Table 6.2: NDCG@10 compared to average percentage of data utilized, for OHSUMED
data vs. TREC Enterprise data. Calculation is done for all numbers of examples per
round using top sampling and a stopping threshold of 0.9.

NDCG@10 % Utilization

1 2 3 4 5 1 2 3 4 5

OHSUMED 0.381 0.446 0.484 0.538 0.534 0.052 0.087 0.132 0.177 0.203

TREC 0.350 0.403 0.469 0.499 0.538 0.017 0.028 0.043 0.055 0.069

6.3.1 Limitations

A major limitation of this experiment is that the system was not tuned for this

data set in any way. The assumption that the parameters that made the biomed-

ical simulations successful, specifically the top sampling method and convergence

threshold of 0.9, would be the same for the enterprise simulations seem to be incor-

rect. Further testing of lower convergence thresholds and other sampling methods

may show that another combination is more effective.



72

6.4 Conclusion

Our system has been shown to be somewhat effective in the enterprise do-

main. System performance was below that of the majority of the TREC Enterprise

systems, and far below our best performance in the biomedical domain. In retro-

spect, we should have altered our hypothesis to reflect the fact that we had too little

metadata to perform ranking on par with the MeSH data, and instead hypothesized

that the system would perform comparatively to the LETOR data. While perfor-

mance was disappointing, an important result of the simulation was the finding that

proportionally more data was not required to achieve proportional performance for

differently sized retrieval sets.



73

CHAPTER 7

USER STUDY IN THE BIOMEDICAL DOMAIN

As the framework presented in this thesis is designed to be used as an online,

ad-hoc search system, its performance outside of simulation must be measured.

In this chapter, we present a preliminary user study to assess whether or not a

large-scale user study is warranted for this system. This study is conducted using

PubPref, an online implementation of the rank learning framework presented in

Chapter 4 operating over the MEDLINE dataset. We show that human users of the

live system report satisfaction with the system, and that good ranking performance

is achieved using relatively little feedback regardless of how many documents their

queries returned.

7.1 User Study

The objective of this study is to ascertain whether or not a full-scale user

study of a live, online, ad-hoc system implementing the framework described in this

thesis is reasonable. To show this, we intend to compare system performance in

simulations to performance in a live system with real users. Specifically, we recreate

the conditions of the simulation with MeSH feature vectors, using top sampling

with three feedback examples collected per round, and a convergence threshold of

0.7. These parameters were chosen somewhat arbitrarily in order to reproduce the

conditions under which our simulations provided a reasonable level of performance,

given a reasonable amount of feedback. Furthermore, we wish to determine if the

implementation is fast enough to be used in an online, ad-hoc environment. We

will consider the framework worthy of further study if we are able to achieve an

interquartile mean NDCG@10 of 0.665 with fewer than 17 feedback examples, and



74

an average satisfaction rating above 3.0 regarding system speed (see Section 7.1.2).

7.1.1 Participants

Nine non-remunerated participants engaged in the study, recruited through

colleagues of the author. Participants were asked to fill out a demographic survey,

as presented in Appendix A.3. The majority of users were between the ages of 26

and 40, and used systems similar to PubPref weekly or daily. The majority of users

also reported searching for items with which they had familiarity, but not complete

expertise. Demographic data is summarized in Figure 7.2.

7.1.2 Materials and Procedure

The study was conducted online. Participants were given login information

for the web-based implementation described in Section 7.1.2.1, along with a copy

of the training document described in Appendix A.1 instructing them in basic use

of the system. Participants used the system from their personal computers, at a

time of their choosing. Upon logging in for the first time, participants were asked

to digitally sign a consent form (see Appendix A.2). The study task was to perform

a search using the PubPref system, just as one would if searching PubMed. The

only guidance they received regarding how they should search was that “PubPref

works best with several hundred search results”. The intent of this instruction

was to encourage participants to submit queries that would return more than ten

documents, the minimum required for the PubPref system to function. The practical

effect of this instruction is that participants were likely to enter very broad, non-

specific queries. As we did not assign arbitrary search queries, participants were

allowed to search for documents on subjects they were familiar with.



75

(a) (b)

(c)

Figure 7.2: Results from the demographic survey. Each graph is labeled with the
question answered, and the percentage of respondents choosing the indicated re-
sponse.



76

After entering their query, users are brought to the feedback page, where

feedback rounds begin. Rounds continue until the stopping criterion has been met,

or the user abandons the search. Abandoned searches are discounted from analysis.

Once feedback rounds terminate, results are displayed to the user. The user then

has the option of ranking another ten documents, allowing us to be sure that we

can calculate NDCG@10 for the final ranking. Finally, the users are asked to fill

out a survey regarding their satisfaction with the system, presented in Appendix

A.4. The most important facet of satisfaction for this experiment will be question

2, i.e., the user’s perception of system speed.

7.1.2.1 Web-Based Implementation of the General
Framework

The rank learning framework is implemented as a series of Python CGI scripts

supported by a PostgreSQL database backend. User searches are processed using

the Entrez eUtils1 which process the search just as if the user had searched at

the main PubMed site. Result identifiers are returned, as the abstracts and their

associated MeSH feature vectors are stored locally. SVM ranking and learning is

done with the SVMLight package [30]. Searches returning fewer than ten results

are not put through ranking rounds, as there is too little data to perform adequate

learning and ranking.

7.2 Results and Discussion

Nine participants made a total of twelve queries to the PubPref system. Here,

we report the results of the demographic survey administered to the participants, of

the use of the system itself, and of the satisfaction survey filled out by participants

1http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils help.html



77

following system use.

7.2.1 Ranking Performance

Table 7.1: Search query, number of results retrieved, and
NDCG@10 for the eight queries analyzed for ranking per-
formance.

Search query # results NDCG@10

hepatorenal syndrome 835 0.992

domestic violence in lesbian relationships 20 0.987

cardiac arrest 928 0.986

SETX 17 0.985

rhabdomyolysis alcohol 298 0.999

limb girdle muscular dystrophy 923 1.000

muscular dystrophy genome wide analysis 38 1.000

HPV vaccine male 318 0.974

Nine of the twelve queries returned enough documents for system the system to

perform its learning task. The file holding the ranking data for one of these searches

was found to have been corrupted in the file system, and had to be discarded,

leaving a total of eight ranking sessions for analysis. Table 7.1 shows the searches,

the number of document retrieved for the search, and the NDCG@10 calculated

for the ranking produced. The results are excellent, far exceeding our expectations

and outperforming simulation data for higher stopping thresholds and number of

examples per round. One possible explanation for the nearly perfect performance

is that the users’ queries were simpler than queries used in OHSUMED; still, this

performance is based upon actual system use, and is valid on its own merits.

Figure 7.3 shows the relationship between amount of feedback required to

complete feedback rounds and the size of the retrieved set of documents. A Kendall’s



78

Figure 7.3: Documents retrieved vs. documents seen for all queries.

tau rank correlation of 0.00 was calculated for for this relationship, indicating that

there is no correlation at all between the number of documents retrieved and the

number of documents seen until ranking reaches the stopping threshold.

7.2.2 Satisfaction Survey

Overall, users seem to be well satisfied with the system as it exist. Survey

results are summarized in Figure 7.5. Of particular note is Figure 7.5(b) regarding

system speed. The vast majority of respondents indicated that they found system

speed to be sufficient, with an average score of 4 out of 5.

7.2.3 Limitations

This study is greatly limited in that it has only eight data points from which

to draw conclusions. As such, no definitive statements regarding this system’s

performance can be made. This is appropriate, as the objective of this study was

to decide if the system merits further study, based on comparing its performance



79

(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Results from the user satisfaction survey. Each graph is labeled with
the question answered, and the percentage of respondents choosing the indicated
response.



80

to simulation. Any results we obtained from this study must be verified in a much

larger, full-scale study of the system. A second limitation is that we neglected to

compare performance of this system to a simple PubMed search ranked by date (the

default setting). Thus, we cannot at this point conclude whether or not this system

is superior to the existing PubMed search.

7.3 Conclusion

The user study showed that the system works well in an ad-hoc online envi-

ronment. Ranking data shows that excellent results were obtained with reasonable

amounts of feedback, often far less than the number of retrieved documents. We

are confident that these results indicate that a full-scale user study is warranted,

and that the system will prove useful to members of the biomedical community at

large.



81

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we have shown that ranking functions can be learned by support

vector machines via user feedback. Ranking functions produced in this way perform

well, and can be learned with a reasonable amount of user feedback when exam-

ples are chosen via active learning methods. In the biomedical domain, ranking

functions produced with a fraction of the available data approached perfect ranking

down to the tenth retrieved document, with examples for feedback chosen using the

simple top sampling method (Sec. 5.2.2). Seeding the ranking process with ranked

documents greatly reduced the amount of feedback required to produce high quality

rankings (Sec. 5.4.1). A limitation was found, however, as poor quality feedback

had a profound effect on ranking performance, limiting the system’s usefulness to

non-experts (Sec. 5.5.1). It was found that the general framework for rank learn-

ing with SVMs via feedback was also applicable to the enterprise domain, though

the untuned system was not found to be superior to existing systems (Sec. 6.4).

Finally, a user study to investigate the feasibility of implementing the framework

in an online ad-hoc search environment showed that the system performance was

comparable to our simulations, as well as showing that large sets of retrieved docu-

ments do not require proportionately large amounts of feedback to be ranked (Sec.



82

7.3).

8.1 Future Work

8.1.1 Full User Study

A natural extension of this work is to conduct a full user study of the online

system. A much larger user base would be tapped, and variables such as the con-

vergence threshold and number of feedback examples per round could be studied.

Furthermore, general issues such as how much feedback a user is willing to give

and user interface issues such as how feedback is provided by the user could be

investigated.

8.1.2 Expansion into Legal Discovery

The domain of legal discovery is an interesting one, and worthy of research

into whether or not the general rank learning framework is a reasonable solution

to problems in the domain. Legal discovery is the process of searching business

records for information pertinent to a legal case [5], and carries a number of inter-

esting challenges to information retrieval in general, and more specifically, learning

to rank. Search is done neither online, nor is it done in an ad-hoc manner; the

most common context for search in legal discovery involves a query that has been

constructed through negotiation between opposing legal teams. Furthermore, all

documents retrieved by the search must be judged for relevance, due to the con-

sequences involved in failing to produce relevant documents during the discovery

process. Compounding these factors and adding to the usual challenges in docu-

ment retrieval, the document sets over which discovery must be performed may be

heterogeneous, composed of many media types and domains.



83

Document ranking enters the scenario largely as a matter of economy. While

retrieval must be balanced towards recovery, precision can help limit time spent

reviewing documents not relevant to discovery. Personnel reviewing documents re-

trieved for discovery are usually paralegals, and cannot be expected to be experts in

the material contained in the documents being reviewed. While reviewers making

the final determination regarding a document’s relevance to discovery must obvi-

ously be well trained, less training is required to provide feedback to a system such as

the one proposed in this work. A small team of paralegals could be trained quickly

to provide feedback to a ranking system, focusing on documents highly likely not to

be relevant, limiting the chances of false negative annotation. The resulting ranking

function would allow reviewers to better target their efforts.

Another interesting facet of legal discovery is that, since each retrieved docu-

ment must be reviewed, it is prudent to perform evaluation over the entire retrieval

set. The success of the top sampling method in the work presented may not be

duplicated in such a task. Experimentation regarding the suitability of other active

learning methods, such as proximity sampling, should be repeated for this domain.

8.1.3 Active Learning Methods

This work does not present an exhaustive investigation of active learning meth-

ods which could be employed to learn ranking functions as part of the proposed

framework. As top sampling produces high quality rankings, future investigations

into alternate active learning methods should focus on reducing the amount of feed-

back required to achieve this level of performance. One potential method would be

to measure the similarity between the feature vectors of documents already seen for

ranking and those unseen. By choosing highly ranked but unseen examples with



84

feature vectors that do not resemble those already seen, the document space can be

more effectively searched.

Beyond investigating different active learning methods, techniques to increase

the speed of learning should also be investigated. As performance gains begin to

level off at an NDCG@10 of around 0.8, it may be possible to “jump start” learning

gains by changing how we sample. Relevant documents dissimilar to those already

seen and annotated for feedback may not be seen by top sampling, leading to per-

formance stagnation as documents the system is already ranking with confidence

reinforce the existing model without adding any new information. Sampling in a

different manner once a reasonable ranking has been achieved will at worst reinforce

the existing model, and at best add new information. A simple metric for deter-

mining when to change from top sampling could involve identifying when a user

gives feedback indicating that all documents submitted for relevance information

are relevant. Assuming the set of relevant documents has not been exhausted, this

should occur at some point if the ranking is of high quality; if not, new information

is presumably being learned.

8.1.4 Consistency Checking and Concept Drift

The gradient oracle experiment showed that poor quality feedback is a major

issue for the framework as presented; incorrect or inconsistent relevance judgements

result in a disproportionate degradation of system performance. For this reason,

it is critical to investigate methods of ensuring that feedback provided by users is

consistent with their information need.

A simple way to check for this consistency is to group, or “cluster”, feed-

back. Clustering is an unsupervised machine learning method which seeks to group



85

examples together based on some notion of similarity. If users’ feedback is con-

sistent with their information needs, their relevance judgements should eventually

cluster together, highly relevant documents clustering with other highly relevant

documents, etc. Feedback inconsistent with these clusters could be discarded, or

presented to the user again for relevance judgement.

A related topic for future work involves concept drift; as a user searches for

documents, the user’s information need may change as more is learned about the

topic. In this case, inconsistent feedback from early feedback rounds might be the

norm. While a fundamentally different task than document retrieval, the frame-

work presented could be adapted to data exploration, allowing the user to explore

retrieved documents with no stopping criterion, reranking documents and perhaps

retrieving new documents through a relevance feedback mechanism as the user’s

information need evolves.

8.1.5 Collaborative Filtering

The online tool described in Chapter 7 provides a platform for investigation

into collaborative filtering for biomedical professionals. Collaborative filtering in-

volves using data from a number of users in order to filter items in a large data set;

it was originally described as a way to filter email and Usenet messages [23], and has

been used more recently in recommender systems [25]. Preference data collected

from the PubPref user base could be employed to help recommend articles to other

users, as well as acting as an active learning method; if a new search is found to be

similar to some others done in the past, documents rated highly relevant by other

users on those similar searches could be shown to the new user for feedback.



86

APPENDIX A

USER STUDY MATERIALS

A.1 Training Document

The following text was sent to all study participants. A copy was also viewable

online.

PubPref Instructions & FAQ

* What is PubPref? PubPref is a system designed to provide relevance-based

ranking for PubMed queries, learned from user feedback. Its aim is to reduce the

amount of time spent sifting through search results by sorting those results based

on the user’s preferences.

* How do I access PubPref? PubPref can currently be found at

http://arens.cs.uiowa.edu/cgi-bin/ranking/login.py and is accessible with a user-

name and password. Contact us at pubpref@gmail.com if you’re interested in par-

ticipating!

* How do I use PubPref? Use of PubPref begins at the search panel. Enter a

search just as you would at the PubMed interface. Feel free to make your queries

less specific than they might normally be; PubPref works best with several hundred

search results. The system is currently limited to a maximum of 1000 results, and

our pilot study document collection is current up to the year 2007. Search may take

up to ten seconds, please be patient.

Once the search returns, you will be instructed to begin the feedback process.

Three results from your search will be displayed, with title, abstract, and a link to

the result on PubMed. Feel free to click on this link, as it should open in a new

window. You are asked to rate each result based on how closely you feel it satisfies



87

your information need. Simply put, is this result the sort of thing you’re looking

for? Click the “Submit feedback” button at the bottom of the page to continue.

The learning process begins once feedback has been submitted. You will repeat

the feedback process a number of times, until a ranking for your search has been

learned that meets or exceeds our quality standards. If at any time you wish to

abandon the feedback process, click the “Abandon feedback” button at the bottom

of the page, and your search results will be displayed using the best ranking data

available. Please refrain from hitting the “back” button on your browser during the

learning process, as this may cause unexpected behavior in the system.

We consider learning to have been successful when our quality measure has

been satisfied. Once this happens, you will be invited to view your search results.

Links to the results in PubMed will open in new windows. Once you have finished

viewing your results, we ask that you complete our usage survey to let us know your

thoughts on the search experience.

* Further questions or comments? Feel free to email us: pubpref@gmail.com

A.2 Consent Form

Following is the text of the consent document participants were required to

agree to before using the system.

We invite you to participate in a research study being conducted by inves-

tigators from The University of Iowa. The purpose of the study is to assess the

efficacy of a web-based search engine system using user feedback for the creation of

relevance-based ranking functions for search over high volume document sets.

If you agree to participate, we would like you to use the search system and

rate the relevance of search results shown to you over a number of feedback rounds.



88

After you provide this feedback, we ask that you fill out a short survey regarding

your use of the system. You are free to skip any questions that you prefer not to

answer. It will take approximately twenty minutes to a half hour to complete this

task.

We will not collect your name or any identifying information about you. We

will not record your computer’s IP address. Each search task you undertake will be

given a randomized ID, which will be unconnected to any other searches you have

undertaken in the past. It will not be possible to link you to your responses on the

survey.

Taking part in this research study is completely voluntary. If you do not wish

to participate in this study, simply refrain from logging in to the search website.

If you have questions about the rights of research subjects, please contact

the Human Subjects Office, 300 College of Medicine Administration Building, The

University of Iowa, Iowa City, IA 52242, (319) 335-6564, or e-mail irb@uiowa.edu.

Thank you very much for your consideration of this research study.

A.3 Demographic Survey

Figure A.1 is a screenshot of the demographic survey participants were asked

to fill out.

A.4 Satisfaction Survey

Figure A.2 is a screenshot of the satisfaction survey participants were asked

to fill out.



89

Figure A.1: Screenshot of the demographic survey



90

Figure A.2: Screenshot of the satisfaction survey



91

REFERENCES

[1] Abdi, H. The kendall rank correlation coefficient. In Encyclopedia of Mea-

surement and Statistics, N. J. Salkind, Ed. SAGE Publications, 2007.

[2] Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval.

Addison-Wesley, 1999.

[3] Bailey, P., Craswell, N., Soboroff, I., Thomas, P., de Vries, A. P.,

and Yilmaz, E. Relevance assessment: Are judges exchangeable and does it

matter? In Proc. ACM SIGIR Intl. Conf. on Information Retrieval (SIGIR

’08) (2008).

[4] Bailey, P., de Vries, A. P., Craswell, N., and Soboroff, I. Overview

of the TREC 2007 enterprise track. In Proc. Text Retrieval Conf. (TREC ’07)

(2007).

[5] Baron, J. R., Lewis, D. D., and Oard, D. W. TREC-2006 legal track

overview. In Proc. Text Retrieval Conf. (TREC ’06) (2006).

[6] Boser, B. E., Guyon, I. N., and Vapnik, V. N. A training algorithm for

optimal margin classifiers. In Conf. on Learning Theory (COLT ’92) (1992).

[7] Brinker, K. Active learning of label ranking functions. In Proc. Intl. Conf.

on Machine Learning (ICML 2004) (2004).



92

[8] Bronander, K. A., Goodman, P. H., Inman, T. F., and Veach, T. L.

Boolean search experience and abilities of medical students and practicing

physicians. Teaching and Learning in Medicine 16, 3 (Sep 2004), 284–9.

[9] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamil-

ton, N., and Hullender, G. Learning to rank using gradient descent. In

Proc. 22nd Intl. Conf. on Machine Learning (2005).

[10] Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., and Hon, H.-W.

Adapting ranking SVM to document retrieval. In Proc. ACM SIGIR Intl.

Conf. on Information Retrieval (SIGIR ’06) (2006).

[11] Christianini, N., and Shawe-Taylor, J. An Introduction to Support Vec-

tor Machines and Other Kernel-Based Learning Methods. Cambridge Univer-

sity Press, 2000.

[12] Churchill, G. A., and Peter, J. Research design effects on the reliability

of rating scales: A meta-analysis. Journal of Marketing Research 21, 4 (1984),

360–375.

[13] Cohen, W. W., Schapire, R. E., and Singer, Y. Learning to order

things. Journal of Artificial Intelligence Research, 10 (1999), 243–270.

[14] Cohn, D., Atlas, L., and Ladner, R. Improving generalization with

active learning. Machine Learning 15, 2 (May 1994), 201–221.

[15] Cortes, C., and Vapnik, V. N. Support-vector networks. Machine Learn-

ing 20, 3 (1995).



93

[16] Craswell, N., and Hawking, D. Overview of the TREC 2004 web track.

In Proc. Text Retrieval Conf. (TREC ’04) (2004).

[17] Drucker, H., Shahrary, B., and Gibbon, D. C. Support vector ma-

chines: Relevance feedback and information retrieval. Information Processing

and Management 38 (2002), 305–323.

[18] Dublin Core Metadata Initiative. Dublin core metadata element set,

version 1.1, 2009.

[19] Ertekin, S., Huang, J., Bottou, L., and Giles, C. L. Learning on the

border: Active learning in imbalanced data classification. In Proc. ACM Conf.

on Information and Knowledge Management (CIKM ’07) (2007).

[20] Fagin, R., Kumar, R., and Sivakumar, D. Comparing top-k lists. SIAM

Journal of Discrete Math 17, 1 (2003), 134–160.

[21] Freund, Y., and Schapire, R. E. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of Computer and System

Sciences (1997).

[22] Goetz, T., and von der Lieth, C.-W. PubFinder: a tool for improving

retrieval rate of relevant pubmed abstracts. Nucleic Acids Research 33, Web

Server issue (Jun 2005), W774–8.

[23] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. Using collabo-

rative filtering to weave an information tapestry. Communications of the ACM

35, 12 (1992).



94

[24] Har-Peled, S., Roth, D., and Zimak, D. Constraint classification: A new

apporach to multiclass classification. In Algorithmic Learning Theory. Springer

Berlin/Heidelberg, 2002.

[25] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T.

Evaluating collaborative filtering recommender systems. ACM Transactions

on Information Systems 22, 1 (2004).

[26] Hersh, W., Buckley, C., Leone, T., and Hickam, D. OHSUMED: An

interactive retrieval evaluation and new large test collection for research. In

Proc. ACM SIGIR Intl. Conf. on Information Retrieval (SIGIR ’94) (1994).

[27] Herskovic, J. R., and Bernstam, E. V. Using incomplete citation data for

MEDLINE results ranking. In Proc. Ann. Symp. American Medical Informatics

Association (AMIA ’05) (2005), pp. 316–320.

[28] Ide, E. New experiments in relevance feedback. In The SMART Retrieval Sys-

tem - Experiments in Automatic Document Processing, G. Salton, Ed. Prentice

Hall, 1971.

[29] Järvelin, K., and Kekäläinen, J. Cumulated gain-based evaluation of IR

techniques. ACM Transactions on Information Systems 20, 4 (October 2002),

422–446.

[30] Joachims, T. Making large-scale SVM learning practical. In Advances in

Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola,

Eds. MIT Press, 1999.



95

[31] Joachims, T. Optimizing search engines using clickthrough data. In Proc.

ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (SIGKDD

’02) (2002), pp. 133–142.

[32] Jurafsky, D., and Martin, J. H. Speech and Language Processing. Prentice-

Hall, 2000.

[33] Lewis, J., Ossowski, S., Hicks, J., Errami, M., and Garner, H. R.

Text similarity: an alternative way to search MEDLINE. Bioinformatics 22,

18 (2006), 2298–2304.

[34] Lin, Y., Li, W., Chen, K., and Liu, Y. A document clustering and

ranking system for exploring MEDLINE citations. Journal of the American

Medical Informatics Assn. 14, 5 (2007), 651–661.

[35] Liu, T.-Y., Xu, J., Qin, T., Xiong, W., and Li, H. Letor: Benchmark

dataset for research on learning to rank for information retrieval. In Proc.

ACM SIGIR Intl. Conf. on Information Retrieval (SIGIR ’07) (2007).

[36] Muin, M., and Fontelo, P. Technical development of PubMed interact:

an improved interface for MEDLINE/PubMed searches. BMC Bioinformatics

6, 36 (2006).

[37] Nallapati, R. Discriminative models for information retrieval. In Proc. ACM

SIGIR Intl. Conf. on Information Retrieval (SIGIR ’04) (2004).

[38] National Library of Medicine. Introduction to MeSH.

http://www.nlm.nih.gov/mesh/introduction.html, June 2009.



96

[39] National Library of Medicine. MEDLINE fact sheet.

http://www.nlm.nih.gov/pubs/factsheets/medline.html, June 2009.

[40] Page, L., Brin, S., Motwani, R., and Winograd, T. The PageRank

citation ranking: Bringing order to the web [monograph], 1999.

[41] Plikus, M. V., Zhang, Z., and Chuong, C.-M. Pubfocus: Seman-

tic MEDLINE/PubMed citations analytics through integration of controlled

biomedical dictionaries and ranking algorithm. BMC Bioinformatics 7 (Oct

2006), 424.

[42] Radlinski, F., and Joachims, T. Query chains: Learning to rank from

implicit feedback. In Proc. ACM Intl. Conf. on Knowledge Discovery and

Data Mining (SIGKDD ’05) (2005).

[43] Robertson, S. Overview of the okapi projects. Journal of Documentation

53, 1 (1997).

[44] Rocchio, J. J. Relevance feedback in information retrieval. In The SMART

Retrieval System - Experiments in Automatic Document Processing, G. Salton,

Ed. Prentice Hall, 1971.

[45] Salton, G., and McGill, M. J. Introduction to Modern Information Re-

trieval. McGraw-Hill Inc., 1986.

[46] Shultz, M. Mapping of medical acronyms and initialisms to Medical Sub-

ject Headings (MeSH) across selected systems. Journal of the Medical Library

Association 94, 4 (2006).



97

[47] Suomela, B. P., and Andrade, M. A. Ranking the whole MEDLINE

database according to a large training set using text indexing. BMC Bioinfor-

matics 6 (Mar 2005), 75.

[48] Tong, S., and Chang, E. Support vector machine active learning for image

retrieval. In Proc. ACM Intl. Conf on Multimedia (MM ’01) (2001).

[49] Tong, S., and Koller, D. Support vector machine active learning with ap-

plications to text classification. Journal of Machine Learning Research (2001),

45–66.

[50] Vapnik, V. N. Statistical Learning Theory. Wiley, 1998.

[51] von Hippel, P. T. Mean, median, and skew: Correcting a textbook rule.

Journal of Statistics Education 13, 2 (2005).

[52] You, G., and Hwang, S. Personalized ranking: A contextual ranking ap-

proach. In Proc. ACM Symp. on Applied Computing (SAC ’07) (2007).

[53] Yu, H. SVM selective sampling for ranking with application to data retrieval.

In Proc. Intl. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining

(SIGKDD ’05) (Jun 2005).

[54] Zhai, C., and Lafferty, J. A study of smoothing methods for language

models applied to ad hoc information retrieval. In Proc. ACM SIGIR Intl.

Conf. on Information Retrieval (SIGIR ’01) (2001).


	University of Iowa
	Iowa Research Online
	Fall 2009

	Learning to rank documents with support vector machines via active learning
	Robert James Arens
	Recommended Citation


	tmp.1271941803.pdf.chP93

